1
|
Krotov V, Kopach O. Nerve Preparation and Recordings for Pharmacological Tests of Sensory and Nociceptive Fiber Conduction Ex Vivo. Bio Protoc 2024; 14:e4969. [PMID: 38618174 PMCID: PMC11006801 DOI: 10.21769/bioprotoc.4969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/16/2024] Open
Abstract
Measuring signal propagation through nerves is a classical electrophysiological technique established decades ago to evaluate sensory and motor functions in the nervous system. The whole-nerve preparation provides a valuable model to investigate nerve function ex vivo; however, it requires specific knowledge to ensure successful and stable measurements. Although the methodology for sciatic nerve recordings has long existed, a method for reliable and long-lasting recordings from myelinated and non-myelinated (nociceptive) fibers still needs to be adapted for pharmacological testing. This protocol takes benefits from epineurium sheath removal for pharmacological tests and provides a detailed description of how to make accurate nerve preparations, from the dissection and handling of nerves to epineurium cleaning, fabrication of adaptable suction electrodes for appropriate fiber stimulation and recordings, setting of electrophysiological protocols for compound action potential (CAP) recordings to distinguish between myelinated and non-myelinated (nociceptive) fibers, and finally to the analysis of the datasets of CAP components. We also demonstrate the feasibility of CAP recordings from individual branches in epineurium-free nerve preparations and provide clues to help retain nerve viability and maintain stable recordings over time. Although a sciatic nerve preparation was used here, the methodology can be applied to other nerve-type preparations. Key features • Detailed and simplified protocol for peripheral nerve preparation for recording sensory inputs ex vivo. • Recordings from myelinated and non-myelinated (nociceptive) fibers can be performed hours after nerve preparation. • The protocol involves the epineurium removal to facilitate drug permeability into nerve tissue for pharmacological tests. • The protocol allows physiological and pathological studies (pain/chronic pain conditions).
Collapse
Affiliation(s)
- Volodymyr Krotov
- Bogomoletz Institute of Physiology, Kyiv, Ukraine
- University College London, London, UK
| | - Olga Kopach
- Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
2
|
Wang L, Gao F, Wang Z, Liang F, Dai Y, Wang M, Wu J, Chen Y, Yan Q, Wang L. Transcutaneous auricular vagus nerve stimulation in the treatment of disorders of consciousness: mechanisms and applications. Front Neurosci 2023; 17:1286267. [PMID: 37920298 PMCID: PMC10618368 DOI: 10.3389/fnins.2023.1286267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
This review provides an in-depth exploration of the mechanisms and applications of transcutaneous auricular vagus nerve stimulation (taVNS) in treating disorders of consciousness (DOC). Beginning with an exploration of the vagus nerve's role in modulating brain function and consciousness, we then delve into the neuroprotective potential of taVNS demonstrated in animal models. The subsequent sections assess the therapeutic impact of taVNS on human DOC, discussing the safety, tolerability, and various factors influencing the treatment response. Finally, the review identifies the current challenges in taVNS research and outlines future directions, emphasizing the need for large-scale trials, optimization of treatment parameters, and comprehensive investigation of taVNS's long-term effects and underlying mechanisms. This comprehensive overview positions taVNS as a promising and safe modality for DOC treatment, with a focus on understanding its intricate neurophysiological influence and optimizing its application in clinical settings.
Collapse
Affiliation(s)
- Likai Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fei Gao
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhan Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Feng Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yongli Dai
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Wu
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yaning Chen
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinjie Yan
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Ciotu CI, Kistner K, Kaindl U, Millesi F, Weiss T, Radtke C, Kremer A, Schmidt K, Fischer MJM. Schwann cell stimulation induces functional and structural changes in peripheral nerves. Glia 2023; 71:945-956. [PMID: 36495059 DOI: 10.1002/glia.24316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Signal propagation is the essential function of nerves. Lysophosphatidic acid 18:1 (LPA) allows the selective stimulation of calcium signaling in Schwann cells but not neurons. Here, the time course of slowing and amplitude reduction on compound action potentials due to LPA exposure was observed in myelinated and unmyelinated fibers of the mouse, indicating a clear change of axonal function. Teased nerve fiber imaging showed that Schwann cell activation is also present in axon-attached Schwann cells in freshly isolated peripheral rat nerves. The LPA receptor 1 was primarily localized at the cell extensions in isolated rat Schwann cells, suggesting a role in cell migration. Structural investigation of rat C-fibers demonstrated that LPA leads to an evagination of the axons from their Schwann cells. In A-fibers, the nodes of Ranvier appeared unchanged, but the Schmidt-Lanterman incisures were shortened and myelination reduced. The latter might increase leak current, reducing the potential spread to the next node of Ranvier and explain the changes in conduction velocity. The observed structural changes provide a plausible explanation for the functional changes in myelinated and unmyelinated axons of peripheral nerves and the reported sensory sensations such as itch and pain.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katrin Kistner
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Kaindl
- Department of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Tamara Weiss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Kremer
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Katy Schmidt
- Department of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Kohle F, Sprenger A, Klein I, Fink GR, Lehmann HC. Nerve conductions studies in experimental models of autoimmune neuritis: A meta-analysis and guideline. J Neuroimmunol 2021; 352:577470. [PMID: 33508768 DOI: 10.1016/j.jneuroim.2020.577470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022]
Abstract
Nerve conduction studies (NCS) are essential to assess peripheral nerve fiber function in research models of immune-mediated neuritis. However, the current lack of standard protocols and reference values impedes data comparability across models and studies. We performed a systematic review and subsequent meta-analysis of the last 30 years of NCS of immune-mediated neuritis in Lewis-rats. Twenty-six papers met the inclusion criteria for meta-analysis. Extracted data showed considerable heterogeneity of recorded nerve conduction velocity (NCV) and compound muscle action potential (CMAP). Studies also significantly differed in terms of technical, methodical, and data reporting issues. The heterogeneity of the underlying studies emphasizes the need for standardization when conducting and reporting NCS in rats. We provide normative values for NCS of the sciatic nerve of Lewis rats and propose seven items that should be addressed when NCS are performed when studying immune paradigms in Lewis rats.
Collapse
Affiliation(s)
- Felix Kohle
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany.
| | - Alina Sprenger
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Ines Klein
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Research Center Juelich, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| | - Helmar C Lehmann
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Artifact reduction by using alternating polarity stimulus pairs in intraoperative peripheral nerve action potential recording. J Clin Monit Comput 2020; 35:1467-1475. [PMID: 33146861 DOI: 10.1007/s10877-020-00613-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Intraoperative nerve action potential (NAP) recording permits direct study of an injured nerve for functional assessment of lesions in continuity. Stimulus artifact contamination often hampers NAP recording and interferes with its interpretation. In the present study, we evaluated the artifact reduction method using alternating polarity in peripheral nerve recording. Our study was conducted under controlled conditions in laboratory animals. NAPs were recorded from surgically exposed median or ulnar nerves. For the artifact reduction method with alternating polarity, two sequential recordings, one with normal and one with reversed stimulus polarity, were acquired and the signals from this recording pair were averaged. Simulation was also performed to further evaluate the effects of alternating polarity on the waveforms. The results are as follows: First, we found that this method worked for recordings with unsaturated electrical stimulus artifacts. Second, slightly unequal latencies occurred in an NAP pair, and this inequality contributed to a minimal loss of NAP amplitudes when averaging the two recordings. Third, perfect artifact cancelation and minimal signal loss were also demonstrated by simulation. Finally, we applied the method during nerve inching and demonstrated its usefulness in intraoperative NAP recordings as the method made the recording more resilient to short conduction distances. Thus, our findings demonstrate that this artifact reduction method can be used as a supplemental tool together with our previously described bridge grounding technique or the nonlifting nerve recording configuration to further improve intraoperative peripheral nerve recording. The method can be applied in clinical settings.
Collapse
|
6
|
Wu G, Belzberg A, Nance J, Gutierrez-Hernandez S, Ritzl EK, Ringkamp M. Solutions to the technical challenges embedded in the current methods for intraoperative peripheral nerve action potential recordings. J Neurosurg 2020; 133:884-893. [PMID: 31419790 PMCID: PMC7393774 DOI: 10.3171/2019.5.jns19146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/14/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intraoperative nerve action potential (NAP) recording is a useful tool for surgeons to guide decisions on surgical approaches during nerve repair surgeries. However, current methods remain technically challenging. In particular, stimulus artifacts that contaminate or mask the NAP and therefore impair the interpretation of the recording are a common problem. The authors' goal was to improve intraoperative NAP recording techniques by revisiting the methods in an experimental setting. METHODS First, NAPs were recorded from surgically exposed peripheral nerves in monkeys. For the authors to test their assumptions about observed artifacts, they then employed a simple model system. Finally, they applied their insights to clinical cases in the operating room. RESULTS In monkey peripheral nerve recordings, large stimulus artifacts obscured NAPs every time the nerve segment (length 3-5 cm) was lifted up from the surrounding tissue, and NAPs could not be recorded. Artifacts were suppressed, and NAPs emerged when "bridge grounding" was applied, and this allowed the NAPs to be recorded easily and reliably. Tests in a model system suggested that exaggerated stimulus artifacts and unmasking of NAPs by bridge grounding are related to a loop effect that is created by lifting the nerve. Consequently, clean NAPs were acquired in "nonlifting" recordings from monkey peripheral nerves. In clinical cases, bridge grounding efficiently unmasked intraoperative NAP recordings, validating the authors' principal concept in the clinical setting and allowing effective neurophysiological testing in the operating room. CONCLUSIONS Technical challenges of intraoperative NAP recording are embedded in the current methods that recommend lifting the nerve from the tissue bed, thereby exaggerating stimulus artifacts by a loop effect. Better results can be achieved by performing nonlifting nerve recording or by applying bridge grounding. The authors not only tested their findings in an animal model but also applied them successfully in clinical practice.
Collapse
Affiliation(s)
- Gang Wu
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Allan Belzberg
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Jessica Nance
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Eva K. Ritzl
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Matthias Ringkamp
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
7
|
Sun S, Delgado J, Behzadian N, Yeomans D, Anderson TA. Ex Vivo Whole Nerve Electrophysiology Setup, Action Potential Recording, and Data Analyses in a Rodent Model. ACTA ACUST UNITED AC 2020; 93:e99. [PMID: 32663369 DOI: 10.1002/cpns.99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ex vivo rodent whole nerves provide a model for assessing the effects of interventions on nerve impulse transmission and consequent sensory and/or motor function. Nerve impulse transmission can be measured through sciatic nerve compound action potential (CAP) recordings. However, de novo development and implementation of an ex vivo whole nerve resection protocol and an electrophysiology setup that retains nerve viability, that produces low noise CAP signals, and that allows for data analysis is challenging. Additionally, some of the existing literature lacks detail and accuracy and may be out of date. This article describes detailed protocols for rodent ex vivo sciatic nerve dissection and handling; importance of an optimal physiologic solution; computer-aided designs for 3D printing of readily adaptable ex vivo rodent whole nerve electrophysiology chambers; construction of low-cost, effective suction electrodes; setup and use of nerve stimulators and amplifiers; acquisition of low noise, small voltage CAP data and digital conversion; use of software for data analyses of CAP components; and tips for troubleshooting. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Electrophysiology wiring and hardware setup Support Protocol 1: 3D printing an electrophysiology chamber Support Protocol 2: Building suction electrodes Basic Protocol 2: Sciatic nerve dissection and compound action potential recording Basic Protocol 3: Data export and analysis Support Protocol 3: Preparation of HEPES-buffered physiologic solution.
Collapse
Affiliation(s)
- Sharon Sun
- University of Texas Southwestern Medical School, Dallas, Texas
| | - Jorge Delgado
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | | | - David Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
8
|
Raspopovic S, Cimolato A, Panarese A, Vallone F, Del Valle J, Micera S, Navarro X. Neural signal recording and processing in somatic neuroprosthetic applications. A review. J Neurosci Methods 2020; 337:108653. [PMID: 32114143 DOI: 10.1016/j.jneumeth.2020.108653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/30/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Neurointerfaces have acquired major relevance as both rehabilitative and therapeutic tools for patients with spinal cord injury, limb amputations and other neural disorders. Bidirectional neural interfaces are a key component for the functional control of neuroprosthetic devices. The two main neuroprosthetic applications of interfaces with the peripheral nervous system (PNS) are: the refined control of artificial prostheses with sensory neural feedback, and functional electrical stimulation (FES) systems attempting to generate motor or visceral responses in paralyzed organs. The results obtained in experimental and clinical studies with both, extraneural and intraneural electrodes are very promising in terms of the achieved functionality for the neural stimulation mode. However, the results of neural recordings with peripheral nerve interfaces are more limited. In this paper we review the different existing approaches for PNS signals recording, denoising, processing and classification, enabling their use for bidirectional interfaces. PNS recordings can provide three types of signals: i) population activity signals recorded by using extraneural electrodes placed on the outer surface of the nerve, which carry information about cumulative nerve activity; ii) spike activity signals recorded with intraneural electrodes placed inside the nerve, which carry information about the electrical activity of a set of individual nerve fibers; and iii) hybrid signals, which contain both spiking and cumulative signals. Finally, we also point out some of the main limitations, which are hampering clinical translation of neural decoding, and indicate possible solutions for improvement.
Collapse
Affiliation(s)
- Stanisa Raspopovic
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zürich, Switzerland
| | - Andrea Cimolato
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zürich, Switzerland; NEARLab - Neuroengineering and Medical Robotics Laboratory, DEIB Department of Electronics, Information and Bioengineering, Politecnico Di Milano, 20133, Milano, Italy; IIT Central Research Labs Genova, Istituto Italiano Tecnologia, 16163, Genova, Italy
| | | | - Fabio Vallone
- The BioRobotics Institute, Scuola Superiore Sant'Anna, I-56127, Pisa, Italy
| | - Jaume Del Valle
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma De Barcelona, CIBERNED, 08193, Bellaterra, Spain
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, I-56127, Pisa, Italy; Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale De Lausanne, Lausanne, CH-1015, Switzerland.
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma De Barcelona, CIBERNED, 08193, Bellaterra, Spain; Institut Guttmann De Neurorehabilitació, Badalona, Spain.
| |
Collapse
|
9
|
Parker JL, Shariati NH, Karantonis DM. Electrically evoked compound action potential recording in peripheral nerves. ACTA ACUST UNITED AC 2018. [DOI: 10.2217/bem-2017-0005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Applications for bioelectric medicine can be found in all parts of the nervous system. The CNS – brain and spinal cord – contain targets for commercial neuromodulation therapies. Peripheral nerves are also modulated with commercially available systems during treatment for chronic pain and epilepsy, and developments are in progress for treating many other diseases. The electrically evoked compound action potential is a measure of the electrical response from the tissue to stimulation. It provides a direct insight into the electrophysiology of the stimulation, and despite its incorporation into cochlear implants it is a technology that is yet to find its way into commercial peripheral nerve stimulation applications. This review outlines the status of evoked compound action potential measurements on peripheral nerves and highlights the challenges which need to be overcome.
Collapse
Affiliation(s)
- John L Parker
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| | | | | |
Collapse
|