1
|
Chen PY, Lin MS, Chen CC, Leu YL, Wang SH. The flavonoid hydroxygenkwanin reduces inflammation and neointimal formation. J Nutr Biochem 2025; 135:109771. [PMID: 39299524 DOI: 10.1016/j.jnutbio.2024.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/26/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Abnormal vascular smooth muscle cell (VSMC) proliferation and migration play crucial roles in neointimal hyperplasia and restenosis progression in response to stimulation with various inflammatory cytokines, such as platelet-derived growth factor-BB (PDGF-BB) and tumour necrosis factor-α (TNF-α). Hydroxygenkwanin (HGK) exerts remarkable anti-inflammatory, antitumour, antiproliferative and antimigratory effects. The aim of the study was to elucidate the therapeutic effect and regulatory mechanism of HGK on neointimal hyperplasia. The results showed that HGK inhibited the abnormal proliferation, migration, and inflammation of PDGF-BB- or TNF-α-treated VSMCs through regulation of the PDK1/AKT/mTOR pathway. In addition, HGK promoted circulating endothelial progenitor cell (EPC) chemotaxis. In an in vivo assay, HGK dramatically enhanced re-endothelization and reduced neointimal hyperplasia after femoral artery denudation with a guide wire in mice. These results suggest that HGK can serve as a therapeutic target drug or a functional food supplement for the treatment of restenosis.
Collapse
MESH Headings
- Animals
- Neointima/drug therapy
- Neointima/pathology
- Neointima/metabolism
- Mice
- Cell Proliferation/drug effects
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Flavonoids/pharmacology
- Tumor Necrosis Factor-alpha/metabolism
- Becaplermin/pharmacology
- Becaplermin/metabolism
- Mice, Inbred C57BL
- Proto-Oncogene Proteins c-akt/metabolism
- Inflammation/drug therapy
- TOR Serine-Threonine Kinases/metabolism
- Cell Movement/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- Proto-Oncogene Proteins c-sis/metabolism
- Proto-Oncogene Proteins c-sis/pharmacology
- Hyperplasia/drug therapy
- Femoral Artery/drug effects
- Signal Transduction/drug effects
- Endothelial Progenitor Cells/drug effects
- Endothelial Progenitor Cells/metabolism
- Cells, Cultured
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Pin-Yu Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mao-Shin Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Chuan Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Luo B, Xu Y, Bai J, Yao X, Kong Y, Wang P, Du J. Higher serum cystatin C and matrix metalloproteinase 9 levels effectively predict in-stent restenosis after stent implantation for intracranial and extracranial arterial stenosis. Pathol Res Pract 2024; 266:155751. [PMID: 39673887 DOI: 10.1016/j.prp.2024.155751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIVE This paper was performed to unravel the predictive value of serum cystatin C (Cys C) and matrix metalloproteinase 9 (MMP-9) levels before vascular stent implantation for in-stent restenosis (ISR) 6-12 months after stent implantation for intracranial and extracranial arterial stenosis. METHODS One hundred and ninety-eight patients who underwent dilatation stenting for intracranial and extracranial arterial stenosis and completed Digital Subtraction Angiography or head and neck CT- Angiography review were selected for the study and were divided into ISR group (n = 33) and no ISR (NISR) group (n = 165) according to the presence or absence of ISR. Serum levels of Cys C, MMP-9, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), uric acid (UA), creatinine (Cr), homocysteine (Hcy), fibrinogen (FIB), total bilirubin (TBIL), endothelin-1 (ET-1), nitric oxide (NO), angiotensin II (Ang II), interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and C-reactive protein (CRP) levels before vascular stent implantation were examined and compared between groups. ROC curves were employed for analyzing the predictive value of serum Cys C and MMP-9 alone or in combination for ISR. Pearson test was utilized for analyzing the serum Cys C and MMP-9 with vasoactive substances and inflammatory cytokines in patients in the ISR group. Logistic regression analysis was implemented to analyze the factors influencing ISR 6-12 months after stent implantation for intracranial and extracranial arterial stenosis. RESULTS Cys C, MMP-9, LDL, UA, Cr, Hcy, FIB, ET-1, NO, Ang II, IL-6, TNF-α, and CRP were higher in the ISR group than in the NISR group, and TBIL was lower than in the NISR group (P < 0.05). The AUC of the combined serum Cys C and MMP-9 (AUC = 0.900) was greater than that of Cys C (AUC = 0.685) or MMP-9 (AUC = 0.870) alone (P < 0.05). Cys C and MMP-9 levels were positively correlated with ET-1, NO, Ang II, IL-6, TNF-α, and CRP (r > 0, P < 0.05). Increased levels of Cys C, MMP-9, LDL-C, UA, Cr, Hcy, FIB, ET-1, NO, Ang II, IL-6, TNF-α, and CRP, and diabetes were risk factors for the development of ISR (OR > 1, P < 0.05), and TBil was protective factor (OR < 1, P < 0.05). CONCLUSION Serum Cys C combined with MMP-9 levels are effective in predicting ISR.
Collapse
Affiliation(s)
- Bin Luo
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China
| | - Yahui Xu
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China
| | - Jin Bai
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China
| | - Xinlu Yao
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China
| | - Yong Kong
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China
| | - Peifu Wang
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China
| | - Jichen Du
- Department of Neurology, Aerospace Center Hospital, Beijing 100049, China.
| |
Collapse
|
3
|
Chang TY, Lin MS, Chen CC, Leu YL, Wang SH. Isoxanthohumol reduces neointimal hyperplasia through the apelin/AKT pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167099. [PMID: 38428686 DOI: 10.1016/j.bbadis.2024.167099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
The abnormal proliferation, migration, and inflammation of vascular smooth muscle cells (VSMCs) play crucial roles in the development of neointimal hyperplasia and restenosis. Exposure to inflammatory cytokines such as platelet-derived growth factor (PDGF)-BB and tumour necrosis factor-alpha (TNF-α) induces the transformation of contractile VSMCs into abnormal synthetic VSMCs. Isoxanthohumol (IXN) has significant anti-inflammatory, antiproliferative, and antimigratory effects. This study aimed to explore the therapeutic impact and regulatory mechanism of IXN in treating neointimal hyperplasia. The present findings indicate that IXN effectively hinders the abnormal proliferation, migration, and inflammation of VSMCs triggered by PDGF or TNF-α. This inhibition is primarily achieved through the modulation of the apelin/AKT or AKT pathway, respectively. In an in vivo model, IXN effectively reduced neointimal hyperplasia in denuded femoral arteries. These results suggest that IXN holds promise as a potential and innovative therapeutic candidate for the treatment of restenosis.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mao-Shin Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Chuan Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Pelliccia F, Zimarino M, Niccoli G, Morrone D, De Luca G, Miraldi F, De Caterina R. In-stent restenosis after percutaneous coronary intervention: emerging knowledge on biological pathways. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead083. [PMID: 37808526 PMCID: PMC10558044 DOI: 10.1093/ehjopen/oead083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023]
Abstract
Percutaneous coronary intervention (PCI) has evolved significantly over the past four decades. Since its inception, in-stent restenosis (ISR)-the progressive reduction in vessel lumen diameter after PCI-has emerged as the main complication of the procedure. Although the incidence of ISR has reduced from 30% at 6 months with bare-metal stents to 7% at 4 years with drug-eluting stents (DESs), its occurrence is relevant in absolute terms because of the dimensions of the population treated with PCI. The aim of this review is to summarize the emerging understanding of the biological pathways that underlie ISR. In-stent restenosis is associated with several factors, including patient-related, genetic, anatomic, stent, lesion, and procedural characteristics. Regardless of associated factors, there are common pathophysiological pathways involving molecular phenomena triggered by the mechanical trauma caused by PCI. Such biological pathways are responses to the denudation of the intima during balloon angioplasty and involve inflammation, hypersensitivity reactions, and stem cell mobilization particularly of endothelial progenitor cells (EPCs). The results of these processes are either vessel wall healing or neointimal hyperplasia and/or neo-atherosclerosis. Unravelling the key molecular and signal pathways involved in ISR is crucial to identify appropriate therapeutic strategies aimed at abolishing the 'Achille's heel' of PCI. In this regard, we discuss novel approaches to prevent DES restenosis. Indeed, available evidence suggests that EPC-capturing stents promote rapid stent re-endothelization, which, in turn, has the potential to decrease the risk of stent thrombosis and allow the use of a shorter-duration dual antiplatelet therapy.
Collapse
Affiliation(s)
- Francesco Pelliccia
- Department of Cardiovascular Sciences, University Sapienza, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco Zimarino
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University, Viale Abruzzo, 332, 66100 Chieti, Italy
- Department of Cardiology, “SS. Annunziata Hospital”, ASL 2 Abruzzo, Via dei Vestini, 66100 Chieti, Italy
| | - Giampaolo Niccoli
- Department of Cardiology, University of Parma, Piazzale S. Francesco, 3, 43121 Parma, Italy
| | - Doralisa Morrone
- Department of Surgical, Medical and Molecular Pathology and of Critical Sciences, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU “Policlinico G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
- Division of Cardiology, IRCCS Hospital Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157 Milan, Italy
| | - Fabio Miraldi
- Department of Cardiovascular Sciences, University Sapienza, Viale del Policlinico 155, 00161 Rome, Italy
| | - Raffaele De Caterina
- Department of Surgical, Medical and Molecular Pathology and of Critical Sciences, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
5
|
Giagtzidis I, Karkos C, Kadoglou FNPE, Spathis A, Papazoglou K. Serum levels of Matrix Metalloproteinases (MMPs) in patients undergoing endovascular intervention for peripheral arterial disease. Ann Vasc Surg 2023:S0890-5096(23)00250-9. [PMID: 37169253 DOI: 10.1016/j.avsg.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES Matrix metalloproteinases (MMPs) play a significant role in the development and progression of atherosclerotic vascular disease. The purpose of this study was to measure and document the profile of plasma circulating MMPs in patients with peripheral arterial disease (PAD) undergoing endovascular revascularization. METHODS This was a single centre prospective observational study with 80 patients with PAD enrolled. They underwent percutaneous balloon angioplasty and/or angioplasty with stent. Exclusion criteria were acute limb ischemia, active inflammation, wet gangrene, liver disease, end stage renal failure and cancer. Patients that underwent open or hybrid (open and endovascular) approach, were also excluded from the study. Venous blood samples were taken preoperatively, 24 hours and 6 months postoperatively. The values of MMP-2, MMP-3, MMP-7, MMP-9 and their inhibitors (Tissue Inhibitor of metalloproteinases, TIMP), TIMP-1 and TIMP-2 were measured. RESULTS The mean age was 67.1 years and 66 of them (82.5%) were male. During the clinical follow up (mean 35.8% months), 12 patients died (16.4%), 15 (20.5%) of them had a major adverse limb event (MALE) and 14 (19.2%) of them had a major adverse cardiovascular event (MACE). There was a statistically significant raise in the values of MMP-2. MMP-3 and MMP-7 at 6 months postoperatively, when compared to the preoperative and 24 hours postoperative values. There was no correlation of MMP and TIMP values with mortality, MALE and MACE events. CONCLUSIONS The present single-centre prospective study documented increased circulating levels of MMPs post-operatively in PAD patients undergoing endovascular treatment. Vascular trauma caused by angioplasty, could trigger expression of MMPs and TIMPs, but the absence of any association with clinical complications requires further investigation.
Collapse
Affiliation(s)
- Ioakeim Giagtzidis
- Aristotle University of Thessaloniki, Ippokratio General Hospital, 5(th) Surgical Department, Thessaloniki, Greece.
| | - Christos Karkos
- Aristotle University of Thessaloniki, Ippokratio General Hospital, 5(th) Surgical Department, Thessaloniki, Greece
| | | | - Aris Spathis
- Department of Cytopathology, "Attikon" University Hospital, Athens, Greece
| | - Konstantinos Papazoglou
- Aristotle University of Thessaloniki, Ippokratio General Hospital, 5(th) Surgical Department, Thessaloniki, Greece
| |
Collapse
|
6
|
Kang K, Gao F, Mo D, Yang M, Liu Y, Yang B, Chen X, Gu W, Ma G, Zhao X, Miao ZR, Ma N. Outcome of endovascular recanalization for intracranial in-stent restenosis. J Neurointerv Surg 2020; 12:1094-1098. [PMID: 32034104 DOI: 10.1136/neurintsurg-2019-015607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE In-stent restenosis (ISR) is one of the long-term adverse outcomes of endovascular angioplasty and stenting for symptomatic intracranial arterial stenosis. In this study, we try to evaluate the safety and efficacy of endovascular treatment for intracranial ISR. METHODS We retrospectively collected patients with intracranial ISR who underwent endovascular treatment from June 2012 to August 2019 at a high-volume stroke center. Successful recanalization was defined as ≤30% residual stenosis. Stroke, myocardial infarction, and death after stenting within 30 days were used to evaluate periprocedural safety. Recurrent stroke in the territory of the culprit vessel and re-ISR in patients with clinical and vascular imaging follow-up data were used to evaluate the long-term outcome. RESULTS 32 patients (59.6±7.2 years old) with ISR were recruited, including 22 patients (68.8%) treated with balloon dilatation, 8 patients (25%) with stenting, and 2 patients (6.3%) with failed procedures. Successful recanalization was achieved in 71.9% (23/32) of patients. There was no stroke, myocardial infarction or death within 30 days after the procedure. Recurrent stroke was found in 10.7% (3/28) of the patients, and re-ISR was found in 42.1% (8/19) of the patients. The re-ISR rate was lower in patients with stenting than in those with balloon dilatation (0% vs 57.1%, p=0.090), and in patients with successful recanalization than in those with unsuccessful recanalization (33.3% vs 75.0%, p=0.352), but with no statistically significant difference. CONCLUSIONS The periprocedural safety of endovascular treatment for intracranial ISR may be acceptable, but the long-term rates of recurrent stroke and re-ISR remain at high levels.
Collapse
Affiliation(s)
- Kaijiang Kang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Gao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dapeng Mo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Yang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifan Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Yang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Weibin Gu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guofeng Ma
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhong-Rong Miao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Nakazaki M, Oka S, Sasaki M, Kataoka-Sasaki Y, Onodera R, Komatsu K, Iihoshi S, Hiroura M, Kawaguchi A, Kocsis JD, Honmou O. Prevention of neointimal hyperplasia induced by an endovascular stent via intravenous infusion of mesenchymal stem cells. J Neurosurg 2019; 133:1773-1785. [PMID: 31585431 DOI: 10.3171/2019.7.jns19575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/01/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In-stent restenosis after percutaneous transluminal angioplasty and stenting (PTAS) due to neointimal hyperplasia is a potential cause of clinical complications, including repeated revascularization and ischemic events. Neointimal hyperplasia induced by an inflammatory response to the stent strut may be a possible mechanism of in-stent restenosis. Intravenous infusion of bone marrow-derived mesenchymal stem cells (MSCs) has been reported to show therapeutic efficacy for cerebral stroke, presumably by an antiinflammatory effect. This study aimed to determine whether MSCs can reduce or prevent neointimal hyperplasia induced by an endovascular stent. METHODS In this study, two types of bare metal stents were deployed using a porcine (mini-pig) model. One stent was implanted in the common carotid artery (CCA), which is considered quite similar to the human CCA, and the other was inserted in the superficial cervical artery (SCA), which is similar in size to the human middle cerebral artery. Angiographic images, intravascular ultrasound (IVUS) imaging, and microscopic images were used for analysis. RESULTS Angiographic images and IVUS studies revealed that intravenous infusion of MSCs immediately after deployment of stents prevented in-stent stenosis of the CCA and SCA. Histological analysis also confirmed that inflammatory responses around the stent struts were reduced in both the stented CCA and SCA in the mini-pig. CONCLUSIONS Intravenous infusion of MSCs inhibited the inflammatory reaction to an implanted stent strut, and prevented progressive neointimal hyperplasia in the stented CCA and SCA in a porcine model. Thus, MSC treatment could attenuate the recurrence of cerebral ischemic events after stenting.
Collapse
Affiliation(s)
- Masahito Nakazaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
- 4Department of Neurology, Yale University School of Medicine, New Haven, Connecticut; and
- 5Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Shinichi Oka
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
| | - Masanori Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
- 4Department of Neurology, Yale University School of Medicine, New Haven, Connecticut; and
- 5Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Yuko Kataoka-Sasaki
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
| | - Rie Onodera
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
| | - Katsuya Komatsu
- 2Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido
| | - Satoshi Iihoshi
- 2Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido
| | - Manabu Hiroura
- 3NIPRO Life Science Site, NIPRO Corporation, Kusatsu, Shiga, Japan
| | - Akira Kawaguchi
- 3NIPRO Life Science Site, NIPRO Corporation, Kusatsu, Shiga, Japan
| | - Jeffery D Kocsis
- 4Department of Neurology, Yale University School of Medicine, New Haven, Connecticut; and
- 5Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Osamu Honmou
- 1Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, and
- 4Department of Neurology, Yale University School of Medicine, New Haven, Connecticut; and
- 5Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
8
|
Krzywonos-Zawadzka A, Franczak A, Olejnik A, Radomski M, Gilmer JF, Sawicki G, Woźniak M, Bil-Lula I. Cardioprotective effect of MMP-2-inhibitor-NO-donor hybrid against ischaemia/reperfusion injury. J Cell Mol Med 2019; 23:2836-2848. [PMID: 30729745 PMCID: PMC6433672 DOI: 10.1111/jcmm.14191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/31/2018] [Accepted: 01/10/2019] [Indexed: 11/30/2022] Open
Abstract
Hypoxic injury of cardiovascular system is one of the most frequent complications following ischaemia. Heart injury arises from increased degradation of contractile proteins, such as myosin light chains (MLCs) and troponin I by matrix metalloproteinase 2 (MMP‐2). The aim of the current research was to study the effects of 5‐phenyloxyphenyl‐5‐aminoalkyl nitrate barbiturate (MMP‐2‐inhibitor‐NO‐donor hybrid) on hearts subjected to ischaemia/reperfusion (I/R) injury. Primary human cardiac myocytes and Wistar rat hearts perfused using Langendorff method have been used. Human cardiomyocytes or rat hearts were subjected to I/R in the presence or absence of tested hybrid. Haemodynamic parameters of heart function, markers of I/R injury, gene and protein expression of MMP‐2, MMP‐9, inducible form of NOS (iNOS), asymmetric dimethylarginine (ADMA), as well as MMP‐2 activity were measured. Mechanical heart function, coronary flow (CF) and heart rate (HR) were decreased in hearts subjected to I/R Treatment of hearts with the hybrid (1‐10 µmol/L) resulted in a concentration‐dependent recovery of mechanical function, improved CF and HR. This improvement was associated with decreased tissue injury and reduction of synthesis and activity of MMP‐2. Decreased activity of intracellular MMP‐2 led to reduced degradation of MLC and improved myocyte contractility in a concentration‐dependent manner. An infusion of a MMP‐2‐inhibitor‐NO‐donor hybrid into I/R hearts decreased the expression of iNOS and reduced the levels of ADMA. Thus, 5‐phenyloxyphenyl‐5‐aminoalkyl nitrate barbiturate protects heart from I/R injury.
Collapse
Affiliation(s)
- Anna Krzywonos-Zawadzka
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Franczak
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Olejnik
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Radomski
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - John F Gilmer
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Grzegorz Sawicki
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland.,Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Mieczysław Woźniak
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
9
|
Giagtzidis IT, Kadoglou NP, Mantas G, Spathis A, Papazoglou KO, Karakitsos P, Liapis CD, Karkos CD. The Profile of Circulating Matrix Metalloproteinases in Patients Undergoing Lower Limb Endovascular Interventions for Peripheral Arterial Disease. Ann Vasc Surg 2017; 43:188-196. [PMID: 28288884 DOI: 10.1016/j.avsg.2016.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play a significant role in the development and progression of atherosclerotic vascular disease. We aimed to document the profile of circulating MMPs in peripheral arterial disease (PAD) patients undergoing lower limb endovascular revascularization. METHODS A total of 46 patients (37 male; mean age 66 ± 11 years) undergoing elective lower limb percutaneous revascularization (angioplasty/stent) for symptomatic PAD were recruited from 2 vascular centers. Exclusion criteria were: acute limb ischemia, active infection and/or wet gangrene, liver disease, end-stage renal disease, and cancer. Patients having open revascularization or hybrid (open combined with endovascular) procedures were also excluded. Peripheral venous blood samples were taken on admission and 24 hrs after the procedure. Levels of MMP-2, MMP-3, MMP-7, and MMP-9 were measured along with tissue inhibitors of MMPs (TIMPs) 1 and 2. RESULTS Compared to baseline values, there was a significant elevation in serum MMP-3 (P = 0.014) and MMP-7 (P = 0.008) levels, whereas serum MMP-9 showed a nonsignificant trend to increase (P = 0.169). On the other hand, no significant alterations were found 24 hrs after angioplasty/stenting with regard to the MMP-2 level and TIMP-1 and 2 levels. CONCLUSIONS This study documented the periprocedural profile of circulating MMPs in patients undergoing angioplasty/stenting for PAD. The implications of increased MMP-3 and MMP-7 activity after peripheral endovascular interventions and their potential clinical relevance require further investigation.
Collapse
Affiliation(s)
- Ioakeim T Giagtzidis
- The Fifth Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos P Kadoglou
- Department of Vascular Surgery, "Attikon" University Hospital, University of Athens, Athens, Greece
| | - George Mantas
- Department of Vascular Surgery, "Attikon" University Hospital, University of Athens, Athens, Greece
| | - Aris Spathis
- Department of Cytopathology, "Attikon" University Hospital, Athens, Greece
| | | | - Petros Karakitsos
- Department of Cytopathology, "Attikon" University Hospital, Athens, Greece
| | - Christos D Liapis
- Department of Vascular Surgery, "Attikon" University Hospital, University of Athens, Athens, Greece
| | - Christos D Karkos
- The Fifth Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
10
|
Xie LJ, Huang JX, Yang J, Yuan F, Zhang SS, Yu QJ, Hu J. Propofol protects against blood-spinal cord barrier disruption induced by ischemia/reperfusion injury. Neural Regen Res 2017; 12:125-132. [PMID: 28250758 PMCID: PMC5319217 DOI: 10.4103/1673-5374.199004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Propofol has been shown to exert neuroprotective effects on the injured spinal cord. However, the effect of propofol on the blood-spinal cord barrier (BSCB) after ischemia/reperfusion injury (IRI) is poorly understood. Therefore, we investigated whether propofol could maintain the integrity of the BSCB. Spinal cord IRI (SCIRI) was induced in rabbits by infrarenal aortic occlusion for 30 minutes. Propofol, 30 mg/kg, was intravenously infused 10 minutes before aortic clamping as well as at the onset of reperfusion. Then, 48 hours later, we performed histological and mRNA/protein analyses of the spinal cord. Propofol decreased histological damage to the spinal cord, attenuated the reduction in BSCB permeability, downregulated the mRNA and protein expression levels of matrix metalloprotease-9 (MMP-9) and nuclear factor-κB (NF-κB), and upregulated the protein expression levels of occludin and claudin-5. Our findings suggest that propofol helps maintain BSCB integrity after SCIRI by reducing MMP-9 expression, by inhibiting the NF-κB signaling pathway, and by maintaining expression of tight junction proteins.
Collapse
Affiliation(s)
- Li-Jie Xie
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Jin-Xiu Huang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Jian Yang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Fen Yuan
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Shuang-Shuang Zhang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Qi-Jing Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ji Hu
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| |
Collapse
|