1
|
Dwivedi S, Choudhary P, Gupta A, Singh S. Therapeutical growth in oligodendroglial fate induction via transdifferentiation of stem cells for neuroregenerative therapy. Biochimie 2023; 211:35-56. [PMID: 36842627 DOI: 10.1016/j.biochi.2023.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/20/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The merits of stem cell therapy and research are undisputed due to their widespread usage in the treatment of neurodegenerative diseases and demyelinating disorders. Cell replacement therapy especially revolves around stem cells and their induction into different cell lineages both adult and progenitor - belonging to each germ layer, prior to transplantation or disease modeling studies. The nervous system is abundant in glial cells and among these are oligodendrocytes capable of myelinating new-born neurons and remyelination of axons with lost or damaged myelin sheath. But demyelinating diseases generate tremendous deficit between myelin loss and recovery. To compensate for this loss, analyze the defects in remyelination mechanisms as well as to trigger full recovery in such patients mesenchymal stem cells (MSCs) have been induced to transdifferentiate into oligodendrocytes. But such experiments are riddled with problems like prolonged, tenuous and complicated protocols that stretch longer than the time taken for the spread of demyelination-associated after-effects. This review delves into such protocols and the combinations of different molecules and factors that have been recruited to derive bona fide oligodendrocytes from in vitro differentiation of embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and MSCs with special focus on MSC-derived oligodendrocytes.
Collapse
Affiliation(s)
- Shrey Dwivedi
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Princy Choudhary
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Ayushi Gupta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Sangeeta Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India.
| |
Collapse
|
2
|
Belkozhayev AM, Al-Yozbaki M, George A, Niyazova RY, Sharipov KO, Byrne LJ, Wilson CM. Extracellular Vesicles, Stem Cells and the Role of miRNAs in Neurodegeneration. Curr Neuropharmacol 2022; 20:1450-1478. [PMID: 34414870 PMCID: PMC9881087 DOI: 10.2174/1570159x19666210817150141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
There are different modalities of intercellular communication governed by cellular homeostasis. In this review, we will explore one of these forms of communication called extracellular vesicles (EVs). These vesicles are released by all cells in the body and are heterogeneous in nature. The primary function of EVs is to share information through their cargo consisting of proteins, lipids and nucleic acids (mRNA, miRNA, dsDNA etc.) with other cells, which have a direct consequence on their microenvironment. We will focus on the role of EVs of mesenchymal stem cells (MSCs) in the nervous system and how these participate in intercellular communication to maintain physiological function and provide neuroprotection. However, deregulation of this same communication system could play a role in several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, multiple sclerosis, prion disease and Huntington's disease. The release of EVs from a cell provides crucial information to what is happening inside the cell and thus could be used in diagnostics and therapy. We will discuss and explore new avenues for the clinical applications of using engineered MSC-EVs and their potential therapeutic benefit in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Ayaz M. Belkozhayev
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Almaty, Republic of Kazakhstan
- Structural and Functional Genomics Laboratory of M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Republic of Kazakhstan
| | - Minnatallah Al-Yozbaki
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Alex George
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
- Jubilee Centre for Medical Research, Jubilee Mission Medical College & Research Institute, Thrissur, Kerala, India
| | - Raigul Ye Niyazova
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Almaty, Republic of Kazakhstan
| | - Kamalidin O. Sharipov
- Structural and Functional Genomics Laboratory of M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Republic of Kazakhstan
| | - Lee J. Byrne
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Cornelia M. Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| |
Collapse
|
3
|
Role of NF-κB in Ageing and Age-Related Diseases: Lessons from Genetically Modified Mouse Models. Cells 2021; 10:cells10081906. [PMID: 34440675 PMCID: PMC8394846 DOI: 10.3390/cells10081906] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Ageing is a complex process, induced by multifaceted interaction of genetic, epigenetic, and environmental factors. It is manifested by a decline in the physiological functions of organisms and associated to the development of age-related chronic diseases and cancer development. It is considered that ageing follows a strictly-regulated program, in which some signaling pathways critically contribute to the establishment and maintenance of the aged state. Chronic inflammation is a major mechanism that promotes the biological ageing process and comorbidity, with the transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) as a crucial mediator of inflammatory responses. This, together with the finding that the activation or inhibition of NF-κB can induce or reverse respectively the main features of aged organisms, has brought it under consideration as a key transcription factor that acts as a driver of ageing. In this review, we focused on the data obtained entirely through the generation of knockout and transgenic mouse models of either protein involved in the NF-κB signaling pathway that have provided relevant information about the intricate processes or molecular mechanisms that control ageing. We have reviewed the relationship of NF-κB and premature ageing; the development of cancer associated with ageing and the implication of NF-κB activation in the development of age-related diseases, some of which greatly increase the risk of developing cancer.
Collapse
|
4
|
Tan YZ, Xu XY, Dai JM, Yin Y, He XT, Zhang YL, Zhu TX, An Y, Tian BM, Chen FM. Melatonin induces the rejuvenation of long-term ex vivo expanded periodontal ligament stem cells by modulating the autophagic process. Stem Cell Res Ther 2021; 12:254. [PMID: 33926537 PMCID: PMC8082824 DOI: 10.1186/s13287-021-02322-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Stem cells that have undergone long-term ex vivo expansion are most likely functionally compromised (namely cellular senescence) in terms of their stem cell properties and therapeutic potential. Due to its ability to attenuate cellular senescence, melatonin (MLT) has been proposed as an adjuvant in long-term cell expansion protocols, but the mechanism underlying MLT-induced cell rejuvenation remains largely unknown. Methods Human periodontal ligament stem cells (PDLSCs) were isolated and cultured ex vivo for up to 15 passages, and cells from passages 2, 7, and 15 (P2, P7, and P15) were used to investigate cellular senescence and autophagy change in response to long-term expansion and indeed the following MLT treatment. Next, we examined whether MLT could induce cell rejuvenation by restoring the autophagic processes of damaged cells and explored the underlying signaling pathways. In this context, cellular senescence was indicated by senescence-associated β-galactosidase (SA-β-gal) activity and by the expression of senescence-related proteins, including p53, p21, p16, and γ-H2AX. In parallel, cell autophagic processes were evaluated by examining autophagic vesicles (by transmission electronic microscopy), autophagic flux (by assessing mRFP-GFP-LC3-transfected cells), and autophagy-associated proteins (by Western blot assay of Atg7, Beclin-1, LC3-II, and p62). Results We found that long-term in vitro passaging led to cell senescence along with impaired autophagy. As expected, MLT supplementation not only restored cells to a younger state but also restored autophagy in senescent cells. Additionally, we demonstrated that autophagy inhibitors could block MLT-induced cell rejuvenation. When the underlying signaling pathways involved were investigated, we found that the MLT receptor (MT) mediated MLT-related autophagy restoration by regulating the PI3K/AKT/mTOR signaling pathway. Conclusions The present study suggests that MLT may attenuate long-term expansion-caused cellular senescence by restoring autophagy, most likely via the PI3K/AKT/mTOR signaling pathway in an MT-dependent manner. This is the first report identifying the involvement of MT-dependent PI3K/AKT/mTOR signaling in MLT-induced autophagy alteration, indicating a potential of autophagy-restoring agents such as MLT to be used in the development of optimized clinical-scale cell production protocols. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02322-9.
Collapse
Affiliation(s)
- Yi-Zhou Tan
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xin-Yue Xu
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China.,Shaanxi Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environments, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ji-Min Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yuan Yin
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xiao-Tao He
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yi-Lin Zhang
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Tian-Xiao Zhu
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Ying An
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Bei-Min Tian
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Choudhary P, Gupta A, Singh S. Therapeutic Advancement in Neuronal Transdifferentiation of Mesenchymal Stromal Cells for Neurological Disorders. J Mol Neurosci 2020; 71:889-901. [PMID: 33047251 DOI: 10.1007/s12031-020-01714-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders have become the leading cause of chronic pain and death. Treatments available are not sufficient to help the patients as they only alleviate the symptoms and not the cause. In this regard, stem cells therapy has emerged as an upcoming option for the replacement of dead and damaged neurons. Stem cells, in general, are characterized as cells exhibiting potency properties, i.e., on being subjected to specific conditions they transform into cells of another lineage. Of all the types, mesenchymal stem cells (MSCs) are known for their pluripotent nature without the obstacle of ethical concern surrounding the procurement of other cell types. Although fibroblasts are quite similar to MSCs morphologically, certain markers like CD73, CD 90 are specific to MSCs, making both the cell types distinguishable from each other. This is implemented while procuring MSCs from a plethora of sources like umbilical cord blood, adipose tissue, bone marrow, etc. Among these, bone marrow MSCs are the most widely used type for neural regeneration. Neural regeneration is achieved via transdifferentiation. Several studies have either transplanted the stem cells into rodent models or have carried out transdifferentiation in vitro. The process involves a combination of growth factors, pre-treatment factors, and neuronal differentiation inducing mediums. The results obtained are characterized by neuron-like morphology, expression of markers, along with electrophysical activity in some. Recent attempts involve exploring biomaterials that may mimic the native ECM and therefore can be directly introduced at the site of interest. The review gives a brief description of MSCs, their sources and markers, and the different attempts that have been made towards achieving the goal of differentiating MSCs into neurons.
Collapse
Affiliation(s)
- Princy Choudhary
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Ayushi Gupta
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Sangeeta Singh
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
6
|
Badyra B, Sułkowski M, Milczarek O, Majka M. Mesenchymal stem cells as a multimodal treatment for nervous system diseases. Stem Cells Transl Med 2020; 9:1174-1189. [PMID: 32573961 PMCID: PMC7519763 DOI: 10.1002/sctm.19-0430] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Neurological disorders are a massive challenge for modern medicine. Apart from the fact that this group of diseases is the second leading cause of death worldwide, the majority of patients have no access to any possible effective and standardized treatment after being diagnosed, leaving them and their families helpless. This is the reason why such great emphasis is being placed on the development of new, more effective methods to treat neurological patients. Regenerative medicine opens new therapeutic approaches in neurology, including the use of cell-based therapies. In this review, we focus on summarizing one of the cell sources that can be applied as a multimodal treatment tool to overcome the complex issue of neurodegeneration-mesenchymal stem cells (MSCs). Apart from the highly proven safety of this approach, beneficial effects connected to this type of treatment have been observed. This review presents modes of action of MSCs, explained on the basis of data from vast in vitro and preclinical studies, and we summarize the effects of using these cells in clinical trial settings. Finally, we stress what improvements have already been made to clarify the exact mechanism of MSCs action, and we discuss potential ways to improve the introduction of MSC-based therapies in clinics. In summary, we propose that more insightful and methodical optimization, by combining careful preparation and administration, can enable use of multimodal MSCs as an effective, tailored cell therapy suited to specific neurological disorders.
Collapse
Affiliation(s)
- Bogna Badyra
- Department of TransplantationJagiellonian University Medical CollegeCracowPoland
| | - Maciej Sułkowski
- Department of TransplantationJagiellonian University Medical CollegeCracowPoland
| | - Olga Milczarek
- Department of Children NeurosurgeryJagiellonian University Medical CollegeCracowPoland
| | - Marcin Majka
- Department of TransplantationJagiellonian University Medical CollegeCracowPoland
| |
Collapse
|
7
|
Cycloastragenol as an Exogenous Enhancer of Chondrogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. A Morphological Study. Cells 2020; 9:cells9020347. [PMID: 32028592 PMCID: PMC7072395 DOI: 10.3390/cells9020347] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 12/24/2022] Open
Abstract
Stem cell therapy and tissue engineering represent a promising approach for cartilage regeneration. However, they present limits in terms of mechanical properties and premature de-differentiation of engineered cartilage. Cycloastragenol (CAG), a triterpenoid saponin compound and a hydrolysis product of the main ingredient in Astragalus membranaceous, has been explored for cartilage regeneration. The aim of this study was to investigate CAG’s ability to promote cell proliferation, maintain cells in their stable active phenotype, and support the production of cartilaginous extracellular matrix (ECM) in human adipose-derived mesenchymal stem cells (hAMSCs) in up to 28 days of three-dimensional (3D) chondrogenic culture. The hAMSC pellets were cultured in chondrogenic medium (CM) and in CM supplemented with CAG (CAG–CM) for 7, 14, 21, and 28 days. At each time-point, the pellets were harvested for histological (hematoxylin and eosin (H&E)), histochemical (Alcian-Blue) and immunohistochemical analysis (Type I, II, and X collagen, aggrecan, SOX9, lubricin). After excluding CAG’s cytotoxicity (MTT Assay), improved cell condensation, higher glycosaminoglycans (sGAG) content, and increased cell proliferation have been detected in CAG–CM pellets until 28 days of culture. Overall, CAG improved the chondrogenic differentiation of hAMSCs, maintaining stable the active chondrocyte phenotype in up to 28 days of 3D in vitro chondrogenic culture. It is proposed that CAG might have a beneficial impact on cartilage regeneration approaches.
Collapse
|
8
|
Kumar A, Xu Y, Yang E, Wang Y, Du Y. Fidelity of long-term cryopreserved adipose-derived stem cells for differentiation into cells of ocular and other lineages. Exp Eye Res 2019; 189:107860. [PMID: 31655040 DOI: 10.1016/j.exer.2019.107860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
Adipose-Derived Stem Cells (ADSCs) have an important contribution in regenerative medicine ranging from testing stem cell therapy for disease treatment in pre-clinical models to clinical trials. For immediate use of stem cells for therapy, there is a requirement of the high dose of stem cells at different time points which can be met by cryopreservation. In this study, we evaluated the characteristics of long-term cryopreserved ADSCs and their regenerative potential after an average of twelve-year cryopreservation. Revived ADSCs were examined for cell viability and proliferation by trypan blue, Calcein/Hoechst and MTT assay. Expression of stem cell markers was examined by flow cytometry, immunostaining and qPCR. Colony forming efficiency and spheroid formation ability were also assessed. Multilineage differentiation potential was evaluated by induction into osteocytes, adipocytes, neural cells, corneal keratocytes and trabecular meshwork (TM) cells. Post-thaw, ADSCs maintained expression of stem cell markers CD90, CD73, CD105, CD166, NOTCH1, STRO-1, ABCG2, OCT4, KLF4. ADSCs retained colony and spheroid forming potential. These cells were able to differentiate into osteocytes, confirmed by Alizarin Red S staining and elevated expression of osteocalcin and osteopontin; into adipocytes by Oil Red O staining and elevated expression of PPARγ2. ADSCs could differentiate into neural cells, stained positive to β-III tubulin, neurofilament, GFAP as well as elevated expression of nestin and neurofilament mRNAs. ADSCs could also give rise to corneal keratocytes expressing keratocan, keratan sulfate, ALDH and collagen V, and to TM cells expressing CHI3L1 and AQP1. Differentiated TM cells responded to dexamethasone treatment with increased Myocilin expression, which could be used as in vitro glaucoma model for further studies. Conditioned medium from ADSCs was found to impart a regenerative effect on primary TM cells. In conclusion, ADSCs maintained their stemness and multipotency after long-term cryopreservation with variability between different donors. This study can have great repercussions in regenerative medicine and pave the way for future clinical trials using cryopreserved ADSCs.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yi Xu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Enzhi Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yiwen Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
9
|
Ge S, Jiang X, Paul D, Song L, Wang X, Pachter JS. Human ES-derived MSCs correct TNF-α-mediated alterations in a blood-brain barrier model. Fluids Barriers CNS 2019; 16:18. [PMID: 31256757 PMCID: PMC6600885 DOI: 10.1186/s12987-019-0138-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Immune cell trafficking into the CNS is considered to contribute to pathogenesis in MS and its animal model, EAE. Disruption of the blood–brain barrier (BBB) is a hallmark of these pathologies and a potential target of therapeutics. Human embryonic stem cell-derived mesenchymal stem/stromal cells (hES-MSCs) have shown superior therapeutic efficacy, compared to bone marrow-derived MSCs, in reducing clinical symptoms and neuropathology of EAE. However, it has not yet been reported whether hES-MSCs inhibit and/or repair the BBB damage associated with neuroinflammation that accompanies EAE. Methods BMECs were cultured on Transwell inserts as a BBB model for all the experiments. Disruption of BBB models was induced by TNF-α, a pro-inflammatory cytokine that is a hallmark of acute and chronic neuroinflammation. Results Results indicated that hES-MSCs reversed the TNF-α-induced changes in tight junction proteins, permeability, transendothelial electrical resistance, and expression of adhesion molecules, especially when these cells were placed in direct contact with BMEC. Conclusions hES-MSCs and/or products derived from them could potentially serve as novel therapeutics to repair BBB disturbances in MS. Electronic supplementary material The online version of this article (10.1186/s12987-019-0138-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shujun Ge
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Xi Jiang
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.,Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Debayon Paul
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Li Song
- ImStem Biotechnology, Inc., 400 Farmington Ave., Farmington, CT, 06030, USA
| | - Xiaofang Wang
- ImStem Biotechnology, Inc., 400 Farmington Ave., Farmington, CT, 06030, USA
| | - Joel S Pachter
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| |
Collapse
|
10
|
Anti-aging effects exerted by Tetramethylpyrazine enhances self-renewal and neuronal differentiation of rat bMSCs by suppressing NF-kB signaling. Biosci Rep 2019; 39:BSR20190761. [PMID: 31171713 PMCID: PMC6591573 DOI: 10.1042/bsr20190761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
In order to improve the therapeutic effects of mesenchymal stem cell (MSC)-based therapies for a number of intractable neurological disorders, a more favorable strategy to regulate the outcome of bone marrow MSCs (bMSCs) was examined in the present study. In view of the wide range of neurotrophic and neuroprotective effects, Tetramethylpyrazine (TMP), a biologically active alkaloid isolated from the herbal medicine Ligusticum wallichii, was used. It was revealed that treatment with 30–50 mg/l TMP for 4 days significantly increased cell viability, alleviated senescence by suppressing NF-κB signaling, and promoted bMSC proliferation by regulating the cell cycle. In addition, 40–50 mg/l TMP treatment may facilitate the neuronal differentiation of bMSCs, verified in the present study by presentation of neuronal morphology and expression of neuronal markers: microtubule-associated protein 2 (MAP-2) and neuron-specific enolase (NSE). The quantitative real-time polymerase chain reaction (qRT-PCR) revealed that TMP treatment may promote the expression of neurogenin 1 (Ngn1), neuronal differentiation 1 (NeuroD) and mammalian achaete–scute homolog 1 (Mash1). In conclusion, 4 days of 40–50 mg/l TMP treatment may significantly delay bMSC senescence by suppressing NF-κB signaling, and enhancing the self-renewal ability of bMSCs, and their potential for neuronal differentiation.
Collapse
|
11
|
Facchin F, Alviano F, Canaider S, Bianconi E, Rossi M, Bonsi L, Casadei R, Biava PM, Ventura C. Early Developmental Zebrafish Embryo Extract to Modulate Senescence in Multisource Human Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20112646. [PMID: 31146388 PMCID: PMC6600478 DOI: 10.3390/ijms20112646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cells undergo senescence both in vivo, contributing to the progressive decline in self-healing mechanisms, and in vitro during prolonged expansion. Here, we show that an early developmental zebrafish embryo extract (ZF1) could act as a modulator of senescence in human mesenchymal stem cells (hMSCs) isolated from both adult tissues, including adipose tissue (hASCs), bone marrow (hBM-MSCs), dental pulp (hDP-MSCs), and a perinatal tissue such as the Wharton’s Jelly (hWJ-MSCs). In all the investigated hMSCs, ZF1 decreased senescence-associated β-galactosidase (SA β-gal) activity and enhanced the transcription of TERT, encoding the catalytic telomerase core. In addition, it was associated, only in hASCs, with a transcriptional induction of BMI1, a pleiotropic repressor of senescence. In hBM-MSCs, hDP-MSCs, and hWJ-MSCs, TERT over-expression was concomitant with a down-regulation of two repressors of TERT, TP53 (p53), and CDKN1A (p21). Furthermore, ZF1 increased the natural ability of hASCs to perform adipogenesis. These results indicate the chance of using ZF1 to modulate stem cell senescence in a source-related manner, to be potentially used as a tool to affect stem cell senescence in vitro. In addition, its anti-senescence action could also set the basis for future in vivo approaches promoting tissue rejuvenation bypassing stem cell transplantation.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Eva Bianconi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Martina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D'Augusto 237, 47921 Rimini, Italy.
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, Via Milanese 300, 20099 Sesto San Giovanni (Milano), Italy.
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
12
|
Marycz K, Smieszek A, Trynda J, Sobierajska P, Targonska S, Grosman L, Wiglusz RJ. Nanocrystalline Hydroxyapatite Loaded with Resveratrol in Colloidal Suspension Improves Viability, Metabolic Activity and Mitochondrial Potential in Human Adipose-Derived Mesenchymal Stromal Stem Cells (hASCs). Polymers (Basel) 2019; 11:E92. [PMID: 30960076 PMCID: PMC6402024 DOI: 10.3390/polym11010092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 12/22/2022] Open
Abstract
In response to the demand for new multifunctional materials characterized by high biocompatibility, hydrogel (HG) nanocomposites as a platform for bioactive compound delivery have been developed and fabricated. A specific crosslinking/copolymerization chemistry was used to construct hydrogels with a controlled network organization. The hydrogels were prepared using 3,6-anhydro-α-l-galacto-β-d-galactan (galactose hydrogel) together with resveratrol (trans-3,5,4'-trihydroxystilbene) and calcium hydroxyapatite nanoparticles. The resveratrol was introduced in three different concentrations of 0.1, 0.5, and 1 mM. Nanosized calcium hydroxyapatite was synthesized by a microwave-assisted hydrothermal technique, annealed at 500 °C for 3 h, and introduced at a concentration 10% (m/v). The morphology and structural properties of Ca10(PO₄)₆(OH)₂ and its composite were determined by using XRPD (X-ray powder diffraction) techniques, as well as the absorption and IR (infrared) spectroscopy. The average nanoparticle size was 35 nm. The water affinity, morphology, organic compound release profile, and cytocompatibility of the obtained materials were studied in detail. The designed hydrogels were shown to be materials of biological relevance and of great pharmacological potential as carriers for bioactive compound delivery. Their cytocompatibility was tested using a model of human multipotent stromal cells isolated from adipose tissue (hASCs). The biomaterials increased the proliferative activity and viability of hASCs, as well as reduced markers of oxidative stress. In light of the obtained results, it has been thought that the designed materials meet the requirements of the tissue engineering triad, and may find application in regenerative medicine, especially for personalized therapies.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland.
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Agnieszka Smieszek
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland.
| | - Justyna Trynda
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland.
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
| | - Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
| | - Lukasz Grosman
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
- Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950 Wroclaw, Poland.
| |
Collapse
|
13
|
Romaniuk A, Paszel-Jaworska A, Totoń E, Lisiak N, Hołysz H, Królak A, Grodecka-Gazdecka S, Rubiś B. The non-canonical functions of telomerase: to turn off or not to turn off. Mol Biol Rep 2018; 46:1401-1411. [PMID: 30448892 DOI: 10.1007/s11033-018-4496-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
Telomerase is perceived as an immortality enzyme that enables passing the Hayflick limit. Its main function is telomere restoration but only in a limited group of cells, including cancer cells. Since it is found in a vast majority of cancer cells, it became a natural target for cancer therapy. However, it has much more functions than just altering the metabolism of telomeres-it also reveals numerous so-called non-canonical functions. Thus, a question arises whether it is always beneficial to turn it off when planning a cancer strategy and considering potential side effects? The purpose of this review is to discuss some of the recent discoveries about telomere-independent functions of telomerase in the context of cancer therapy and potential side effects.
Collapse
Affiliation(s)
- Aleksandra Romaniuk
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Anna Paszel-Jaworska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Hanna Hołysz
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Anna Królak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | | | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland.
| |
Collapse
|
14
|
Sphingosine 1-Phosphate Receptor 1 Is Required for MMP-2 Function in Bone Marrow Mesenchymal Stromal Cells: Implications for Cytoskeleton Assembly and Proliferation. Stem Cells Int 2018; 2018:5034679. [PMID: 29713350 PMCID: PMC5866864 DOI: 10.1155/2018/5034679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cell- (BM-MSC-) based therapy is a promising option for regenerative medicine. An important role in the control of the processes influencing the BM-MSC therapeutic efficacy, namely, extracellular matrix remodelling and proliferation and secretion ability, is played by matrix metalloproteinase- (MMP-) 2. Therefore, the identification of paracrine/autocrine regulators of MMP-2 function may be of great relevance for improving BM-MSC therapeutic potential. We recently reported that BM-MSCs release the bioactive lipid sphingosine 1-phosphate (S1P) and, here, we demonstrated an impairment of MMP-2 expression/release when the S1P receptor subtype S1PR1 is blocked. Notably, active S1PR1/MMP-2 signalling is required for F-actin structure assembly (lamellipodia, microspikes, and stress fibers) and, in turn, cell proliferation. Moreover, in experimental conditions resembling the damaged/regenerating tissue microenvironment (hypoxia), S1P/S1PR1 system is also required for HIF-1α expression and vinculin reduction. Our findings demonstrate for the first time the trophic role of S1P/S1PR1 signalling in maintaining BM-MSCs' ability to modulate MMP-2 function, necessary for cytoskeleton reorganization and cell proliferation in both normoxia and hypoxia. Altogether, these data provide new perspectives for considering S1P/S1PR1 signalling a pharmacological target to preserve BM-MSC properties and to potentiate their beneficial potential in tissue repair.
Collapse
|
15
|
Ahn MJ, Cho GW. Metformin promotes neuronal differentiation and neurite outgrowth through AMPK activation in human bone marrow-mesenchymal stem cells. Biotechnol Appl Biochem 2017; 64:836-842. [PMID: 28791738 DOI: 10.1002/bab.1584] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
Metformin is an AMP-activated kinase (AMPK) activator that plays a role in glucose energy metabolism and cell protection. It is widely used to treat several diseases, including type 2 diabetes, cardiovascular diseases, cancer, and metabolic diseases. In this study, we investigated whether AMPK activation upon treatment with metformin may promote neurite outgrowth during the progression of neuronal differentiation in human bone marrow-mesenchymal stem cells (hBM-MSCs). Differentiation of metformin-treated MSCs (Met-MSCs to Met-diMSCs) in the neuronal induction media resulted in an increase in the number of differentiated cells in a metformin concentration dependent manner. The differentiation rate reached its maximum at 3 H after the initial treatment with neuronal induction media. At 3 H of induction, the neurite length increased significantly in Met-diMSCs as compared with control cells without metformin treatment (diMSCs). diMSCs showed a significant increase in the expression of neuronal-specific marker genes; however, the expression of dendrite-specific markers MAP-2 and Tuj-1 was significantly increased in Met-diMSCs as compared to diMSCs, as confirmed by immunoblotting. This effect was abolished upon treatment with the AMPK inhibitor, compound C, as evident by quantitative PCR, immunoblotting, and immunocytochemical staining. Thus, metformin treatment promotes neuronal differentiation and neurite outgrowth in hBM-MSCs through AMPK activation.
Collapse
Affiliation(s)
- Min-Ji Ahn
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Korea.,Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Korea
| | - Goang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Korea.,Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Korea
| |
Collapse
|
16
|
Proto JD, Lu A, Dorronsoro A, Scibetta A, Robbins PD, Niedernhofer LJ, Huard J. Inhibition of NF-κB improves the stress resistance and myogenic differentiation of MDSPCs isolated from naturally aged mice. PLoS One 2017. [PMID: 28640861 PMCID: PMC5480862 DOI: 10.1371/journal.pone.0179270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A decline in the regenerative capacity of adult stem cells with aging is well documented. As a result of this decline, the efficacy of autologous stem cell therapies is likely to decline with increasing donor age. In these cases, strategies to restore the function of aged stem cells would have clinical utility. Globally, the transcription factor NF-κB is up-regulated in aged tissues. Given the negative role that NF-κB plays in myogenesis, we investigated whether the age-related decline in the function of muscle-derived stem/progenitor cells (MDSPCs) could be improved by inhibition of NF-κB. Herein, we demonstrate that pharmacologic or genetic inhibition of NF-κB activation increases myogenic differentiation and improves resistance to oxidative stress. Our results suggest that MDSPC “aging” may be reversible, and that pharmacologic targeting of pathways such as NF-κB may enhance the efficacy of cell-based therapies.
Collapse
Affiliation(s)
- Jonathan D. Proto
- Department of Medicine, Division of Molecular Medicine, Columbia University, New York, NY, United States of America
| | - Aiping Lu
- Department of Orthopaedic Surgery, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States of America
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, United States of America
| | - Akaitz Dorronsoro
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Alex Scibetta
- Department of Orthopaedic Surgery, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States of America
| | - Paul D. Robbins
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Laura J. Niedernhofer
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Johnny Huard
- Department of Orthopaedic Surgery, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States of America
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, United States of America
- * E-mail:
| |
Collapse
|
17
|
Wang JY, Chen WM, Wen CS, Hung SC, Chen PW, Chiu JH. Du-Huo-Ji-Sheng-Tang and its active component Ligusticum chuanxiong promote osteogenic differentiation and decrease the aging process of human mesenchymal stem cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:64-72. [PMID: 28040510 DOI: 10.1016/j.jep.2016.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 09/01/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Postmenopausal osteoporosis is the most common bone disease worldwide. Information concerning the effects of herbal medicines on mesenchymal cell osteogenesis and senescence remains lacking. AIM OF THIS STUDY This study was designed to investigate the effects of Du-Huo-Ji-Sheng-Tang (DHJST), a Chinese herbal medicine and its active component Ligusticum chuanxiong on osteogenic differentiation and the aging process of human mesenchymal cells (hMSCs). MATERIALS & METHODS hMSCs were used as in vitro model and osteogenesis was induced by administration of either osteogenesis inducing medium (OIM) or dexamethasone-depleted OIM (DDOIM) for 1-week or 2 weeks and the results were evaluated by measuring the formation of mineralization nodules. The effects of the compound recipe DHJST and its active component L. chuanxiong on hMSCs osteogenesis-related gene expression was determined by real-time PCR that targeted bone morphogenetic protein-2 (BMP2), RUNX2, ALP, COL-1, osteopontin (OPN), and osteocalcin (OCN). Antibodies against BMP-related signaling pathway proteins, such as BMP-2, ERK, SMAD 1/5/8, and RUNX2, were also detected at the protein level by Western blotting. Finally, the cumulative growth curve and senescence of the hMSCs were evaluated in order to assess the aging process. RESULTS L. chuanxiong increased osteogenic activity in hMSCs and up-regulated BMP-2 and RUNX2 gene expression via the activation of SMAD 1/5/8 and ERK signaling. Furthermore DHJST also showed a trend towards promoting the same effects in the same system. In the absence of dexamethasone, DHJST did activate SMAD 1/5/8 and ERK signaling and hence increased RUNX2 protein expression in hMSCs. In addition, both DHJST and L. chuanxiong delayed the hMSCs aging process by decreasing cell senescence. CONCLUSIONS We concluded that DHJST and its active component L. chuanxiong are able to promote osteogenic activity and decrease hMSCs senescence as cells age.
Collapse
Affiliation(s)
- Jir-You Wang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| | - Wei-Ming Chen
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Che-Sheng Wen
- Department of Orthopedics, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Shih-Chieh Hung
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Pei-Wen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Jen-Hwey Chiu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; Division of General Surgery, Departml;ent of Surgery, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC; Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
18
|
Chen T, Yu Y, Tang LJ, Kong L, Zhang CH, Chu HY, Yin LW, Ma HY. Neural stem cells over-expressing brain-derived neurotrophic factor promote neuronal survival and cytoskeletal protein expression in traumatic brain injury sites. Neural Regen Res 2017; 12:433-439. [PMID: 28469658 PMCID: PMC5399721 DOI: 10.4103/1673-5374.202947] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cytoskeletal proteins are involved in neuronal survival. Brain-derived neurotrophic factor can increase expression of cytoskeletal proteins during regeneration after axonal injury. However, the effect of neural stem cells genetically modified by brain-derived neurotrophic factor transplantation on neuronal survival in the injury site still remains unclear. To examine this, we established a rat model of traumatic brain injury by controlled cortical impact. At 72 hours after injury, 2 × 107 cells/mL neural stem cells overexpressing brain-derived neurotrophic factor or naive neural stem cells (3 mL) were injected into the injured cortex. At 1–3 weeks after transplantation, expression of neurofilament 200, microtubule-associated protein 2, actin, calmodulin, and beta-catenin were remarkably increased in the injury sites. These findings confirm that brain-derived neurotrophic factor-transfected neural stem cells contribute to neuronal survival, growth, and differentiation in the injury sites. The underlying mechanisms may be associated with increased expression of cytoskeletal proteins and the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yan Yu
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Liu-Jiu Tang
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Kong
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Cheng-Hong Zhang
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Hai-Ying Chu
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Liang-Wei Yin
- Department of Oncology, Dalian Central Hospital, Dalian, Liaoning Province, China
| | - Hai-Ying Ma
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
19
|
Chen K, Yuan R, Geng S, Zhang Y, Ran T, Kowalski E, Liu J, Li L. Toll-interacting protein deficiency promotes neurodegeneration via impeding autophagy completion in high-fat diet-fed ApoE -/- mouse model. Brain Behav Immun 2017; 59:200-210. [PMID: 27720815 PMCID: PMC5154796 DOI: 10.1016/j.bbi.2016.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
The excessive accumulation of specific cellular proteins or autophagic vacuoles (AVs) within neurons is a pathologic hallmark of neurodegenerative diseases. Constitutive autophagy in neurons prevents abnormal intracellular protein aggregation and is critical for maintaining cell survival. Since our previous study showed that Toll-interacting protein (Tollip)-deficient macrophages had constitutive disruption of endosome-lysosome fusion, we hypothesize that Tollip deficiency may also promote neuron death via blockage of autophagy completion. Indeed, we observed significantly higher levels of neuron death in the brain regions of cerebral cortex, hippocampus, and cerebellum from ApoE-/-/Tollip-/- mice as compared to ApoE-/- mice fed with high fat diet (HFD). We further documented diminished density of neurons and increased ratios of TUNEL positive cells in the hippocampus of ApoE-/-/Tollip-/- mice. The ultrastructural electron microscopy analyses revealed neuron cell shrinkage as well as loss of intracellular structure in brain tissues from ApoE-/-/Tollip-/- mice. There was dramatic accumulation of autophagosomes in the cytoplasm, elevated accumulation of β-amyloid and α-synuclein, and increased levels of p62 and Parkin in the brain tissues from ApoE-/-/Tollip-/- mice as compared to ApoE-/- mice. Our data suggest that Tollip may play a crucial role in sustaining neuron health by facilitating the completion of autophagy, and that Tollip-deficiency may accelerate neuron death related to neurological disease such as Alzheimer's disease.
Collapse
Affiliation(s)
- Keqiang Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ruoxi Yuan
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA,Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Taojing Ran
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Elizabeth Kowalski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jingze Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA,Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA,Address correspondence and reprint requests to Prof. Liwu Li, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Life Science 1 Building, Washington Street, Blacksburg, VA 24061.
| |
Collapse
|
20
|
Ali EHA, Ahmed-Farid OA, Osman AAE. Bone marrow-derived mesenchymal stem cells ameliorate sodium nitrite-induced hypoxic brain injury in a rat model. Neural Regen Res 2017; 12:1990-1999. [PMID: 29323037 PMCID: PMC5784346 DOI: 10.4103/1673-5374.221155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sodium nitrite (NaNO2) is an inorganic salt used broadly in chemical industry. NaNO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissue specific cells and MSC therapy is a potential method for improving brain functions. This work aims to investigate the possible therapeutic role of bone marrow-derived MSCs against NaNO2 induced hypoxic brain injury. Rats were divided into control group (treated for 3 or 6 weeks), hypoxic (HP) group (subcutaneous injection of 35 mg/kg NaNO2 for 3 weeks to induce hypoxic brain injury), HP recovery groups N-2wR and N-3wR (treated with the same dose of NaNO2 for 2 and 3 weeks respectively, followed by 4-week or 3-week self-recovery respectively), and MSCs treated groups N-2wSC and N-3wSC (treated with the same dose of NaNO2 for 2 and 3 weeks respectively, followed by one injection of 2 × 106 MSCs via the tail vein in combination with 4 week self-recovery or intravenous injection of NaNO2 for 1 week in combination with 3 week self-recovery). The levels of neurotransmitters (norepinephrine, dopamine, serotonin), energy substances (adenosine monophosphate, adenosine diphosphate, adenosine triphosphate), and oxidative stress markers (malondialdehyde, nitric oxide, 8-hydroxy-2'-deoxyguanosine, glutathione reduced form, and oxidized glutathione) in the frontal cortex and midbrain were measured using high performance liquid chromatography. At the same time, hematoxylin-eosin staining was performed to observe the pathological change of the injured brain tissue. Compared with HP group, pathological change of brain tissue was milder, the levels of malondialdehyde, nitric oxide, oxidized glutathione, 8-hydroxy-2'-deoxyguanosine, norepinephrine, serotonin, glutathione reduced form, and adenosine triphosphate in the frontal cortex and midbrain were significantly decreased, and glutathione reduced form/oxidized glutathione and adenosine monophosphate/adenosine triphosphate ratio were significantly increased in the MSCs treated groups. These findings suggest that bone marrow-derived MSCs exhibit neuroprotective effects against NaNO2-induced hypoxic brain injury through exerting anti-oxidative effects and providing energy to the brain.
Collapse
Affiliation(s)
- Elham H A Ali
- Faculty of Women for Art, Sciences and Education, Ain Shams University, Cairo, Egypt
| | - Omar A Ahmed-Farid
- National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Amany A E Osman
- Faculty of Women for Art, Sciences and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
21
|
Purmorphamine as a Shh Signaling Activator Small Molecule Promotes Motor Neuron Differentiation of Mesenchymal Stem Cells Cultured on Nanofibrous PCL Scaffold. Mol Neurobiol 2016; 54:5668-5675. [DOI: 10.1007/s12035-016-0090-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/30/2016] [Indexed: 12/24/2022]
|
22
|
The Role of Stem Cells in the Treatment of Cerebral Palsy: a Review. Mol Neurobiol 2016; 54:4963-4972. [PMID: 27520277 DOI: 10.1007/s12035-016-0030-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
Cerebral palsy (CP) is a neuromuscular disease due to injury in the infant's brain. The CP disorder causes many neurologic dysfunctions in the patient. Various treatment methods have been used for the management of CP disorder. However, there has been no absolute cure for this condition. Furthermore, some of the procedures which are currently used for relief of symptoms in CP cause discomfort or side effects in the patient. Recently, stem cell therapy has attracted a huge interest as a new therapeutic method for treatment of CP. Several investigations in animal and human with CP have demonstrated positive potential of stem cell transplantation for the treatment of CP disorder. The ultimate goal of this therapeutic method is to harness the regenerative capacity of the stem cells causing a formation of new tissues to replace the damaged tissue. During the recent years, there have been many investigations on stem cell therapy. However, there are still many unclear issues regarding this method and high effort is needed to create a technology as a perfect treatment. This review will discuss the scientific background of stem cell therapy for cerebral palsy including evidences from current clinical trials.
Collapse
|
23
|
Shuai Y, Liao L, Su X, Yu Y, Shao B, Jing H, Zhang X, Deng Z, Jin Y. Melatonin Treatment Improves Mesenchymal Stem Cells Therapy by Preserving Stemness during Long-term In Vitro Expansion. Am J Cancer Res 2016; 6:1899-917. [PMID: 27570559 PMCID: PMC4997245 DOI: 10.7150/thno.15412] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of MSCs, resulting in failure of MSCs therapy. Here, we report a melatonin-based strategy to improve cell therapy of in vitro cultured MSCs. Among four small molecules with anti-aging and stem cell-protection properties (rapamycin, resveratrol, quercetin and melatonin), colony forming, proliferation, and osteogenic differentiation assay showed that melatonin was the most efficient to preserve self-renewal and differentiation properties of rat bone marrow MSCs (BMMSCs) after long-term passaging. Functional assays confirmed melatonin treatment did not affect the colony forming, proliferation and osteogenic differentiation of BMMSCs cultured for 1 or 4 passages, but largely prevented the decline of self-renew and differentiation capacity of BMMSCs cultured for 15 passages in vitro. Furthermore, heterotopic osteogenesis assay, critical size calvarial defects repair assay, osteoporosis treatment and experimental colitis therapy assay strongly certified that melatonin preserved the therapeutic effect of long-term passaged BMMSCs on bone regeneration and immunotherapy in vivo. Mechanistically, melatonin functioned by activating antioxidant defense system, inhibiting the pathway of cell senescence, and preserving the expression of gene governing the stemness. Taken together, our findings showed that melatonin treatment efficiently prevented the dysfunction and therapeutic failure of BMMSCs after long-term passaging, providing a practical strategy to improve the application of BMMSCs in tissue engineering and cytotherapy.
Collapse
|
24
|
Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Concise Review: Dental Pulp Stem Cells: A Novel Cell Therapy for Retinal and Central Nervous System Repair. Stem Cells 2016; 35:61-67. [PMID: 27273755 DOI: 10.1002/stem.2398] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/18/2016] [Accepted: 04/29/2016] [Indexed: 01/04/2023]
Abstract
Dental pulp stem cells (DPSC) are neural crest-derived ecto-mesenchymal stem cells that can relatively easily and non-invasively be isolated from the dental pulp of extracted postnatal and adult teeth. Accumulating evidence suggests that DPSC have great promise as a cellular therapy for central nervous system (CNS) and retinal injury and disease. The mode of action by which DPSC confer therapeutic benefit may comprise multiple pathways, in particular, paracrine-mediated processes which involve a wide array of secreted trophic factors and is increasingly regarded as the principal predominant mechanism. In this concise review, we present the current evidence for the use of DPSC to repair CNS damage, including recent findings on retinal ganglion cell neuroprotection and regeneration in optic nerve injury and glaucoma. Stem Cells 2017;35:61-67.
Collapse
Affiliation(s)
- Ben Mead
- School of Dentistry, Oral Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Neurotrauma and Neurobiology Research Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Ann Logan
- Neurotrauma and Neurobiology Research Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Martin Berry
- Neurotrauma and Neurobiology Research Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Wendy Leadbeater
- Neurotrauma and Neurobiology Research Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Ben A Scheven
- School of Dentistry, Oral Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
25
|
Osorio MJ, Goldman SA. Glial progenitor cell-based treatment of the childhood leukodystrophies. Exp Neurol 2016; 283:476-88. [PMID: 27170209 DOI: 10.1016/j.expneurol.2016.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/19/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022]
Abstract
The childhood leukodystrophies comprise a group of hereditary disorders characterized by the absence, malformation or destruction of myelin. These disorders share common clinical, radiological and pathological features, despite their diverse molecular and genetic etiologies. Oligodendrocytes and astrocytes are the major affected cell populations, and are either structurally impaired or metabolically compromised through cell-intrinsic pathology, or are the victims of mis-accumulated toxic byproducts of metabolic derangement. In either case, glial cell replacement using implanted tissue or pluripotent stem cell-derived human neural or glial progenitor cells may comprise a promising strategy for both structural remyelination and metabolic rescue. A broad variety of pediatric white matter disorders, including the primary hypomyelinating disorders, the lysosomal storage disorders, and the broader group of non-lysosomal metabolic leukodystrophies, may all be appropriate candidates for glial progenitor cell-based treatment. Nonetheless, a variety of specific challenges remain before this therapeutic strategy can be applied to children. These include timely diagnosis, before irreparable neuronal injury has ensued; understanding the natural history of the targeted disease; defining the optimal cell phenotype for each disorder; achieving safe and scalable cellular compositions; designing age-appropriate controlled clinical trials; and for autologous therapy of genetic disorders, achieving the safe genetic editing of pluripotent stem cells. Yet these challenges notwithstanding, the promise of glial progenitor cell-based treatment of the childhood myelin disorders offers hope to the many victims of this otherwise largely untreatable class of disease.
Collapse
Affiliation(s)
- M Joana Osorio
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, United States; Center for Basic and Translational Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen 2200, Denmark.
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, United States; Center for Basic and Translational Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen 2200, Denmark.
| |
Collapse
|
26
|
He L, Zhao F, Zheng Y, Wan Y, Song J. Loss of interactions between p53 and survivin gene in mesenchymal stem cells after spontaneous transformation in vitro. Int J Biochem Cell Biol 2016; 75:74-84. [PMID: 27046449 DOI: 10.1016/j.biocel.2016.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/06/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSC) from various animals undergo a spontaneous transformation in long-term culture. The transformed MSCs are highly tumorigenic and are likely to be the tumor-initiating cells of sarcoma. To explain why the transformed MSCs become tumorigenic, the present study investigated the characteristics of rat MSCs before and after spontaneous transformation. It was shown that although the transformed MSCs maintained typical surface markers of MSC, they exhibited some cancer stem cell-like characteristics such as loss of contact inhibition and multi-potency to mesenchymal lineages, and acquirement of ability of anchorage-independent growth. The expression of a key senescence regulator p16 almost disappeared, but the other one, p53 abnormally increased in the transformed MSCs. ChIP assay demonstrated that a normal negative regulation of p53 on survivin gene disappeared in the transformed cells due to a lack of p53 binding to the promoter of survivin gene. DNA sequencing revealed that the p53 gene in transformed MSCs was not a wild-type, but a 942C>T mutant with the mutation located in the sequence coding p53 protein's DNA-binding domain. These findings indicate that the transformed MSCs express high levels of a p53 mutant that loses the ability to bind survivin gene, leading to an abnormally upregulated expression of survivin, which is a key reason for the cell's unlimited proliferation.
Collapse
Affiliation(s)
- Liu He
- Department of Anatomy and Embryology, Wuhan University School of Medicine, 135 Donghu Road, Wuhan, Hubei 430071, PR China.
| | - Fangyu Zhao
- Department of Physiology, Wuhan University School of Medicine, 135 Donghu Road, Wuhan, Hubei 430071, PR China.
| | - Yong Zheng
- Department of Anatomy and Embryology, Wuhan University School of Medicine, 135 Donghu Road, Wuhan, Hubei 430071, PR China.
| | - Yu Wan
- Department of Physiology, Wuhan University School of Medicine, 135 Donghu Road, Wuhan, Hubei 430071, PR China.
| | - Jian Song
- Department of Anatomy and Embryology, Wuhan University School of Medicine, 135 Donghu Road, Wuhan, Hubei 430071, PR China.
| |
Collapse
|