1
|
Sargsyan T, Simonyan HM, Stepanyan L, Tsaturyan A, Vicidomini C, Pastore R, Guerra G, Roviello GN. Neuroprotective Properties of Clove ( Syzygium aromaticum): State of the Art and Future Pharmaceutical Applications for Alzheimer's Disease. Biomolecules 2025; 15:452. [PMID: 40149988 PMCID: PMC11940766 DOI: 10.3390/biom15030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
This study explores the neuropharmacological potential of various molecular and amino acid components derived from Syzygium aromaticum (clove), an aromatic spice with a long history of culinary and medicinal use. Key bioactive compounds such as eugenol, α-humulene, β-caryophyllene, gallic acid, quercetin, and luteolin demonstrate antioxidant, anti-inflammatory, and neuroprotective properties by scavenging free radicals, modulating calcium channels, and reducing neuroinflammation and oxidative stress. Moreover, gallic acid and asiatic acid may exhibit protective effects, including neuronal apoptosis inhibition, while other useful properties of clove phytocompounds include NF-κB pathway inhibition, membrane stabilization, and suppression of pro-inflammatory pathways, possibly in neurons or other relevant cell types, further contributing to neuroprotection and cognitive enhancement. Amino acid analysis revealed essential and non-essential amino acids such as aspartic acid, serine, glutamic acid, glycine, histidine, and arginine in various clove parts (buds, fruits, branches, and leaves). These amino acids play crucial roles in neurotransmitter synthesis, immune modulation, antioxidant defense, and metabolic regulation. Collectively, these bioactive molecules and amino acids contribute to clove's antioxidant, anti-inflammatory, neurotrophic, and neurotransmitter-modulating effects, highlighting its potential as a preventive and therapeutic candidate for neurodegenerative disorders. While preliminary preclinical studies support these neuroprotective properties, further research, including clinical trials, is needed to validate the efficacy and safety of clove-based interventions in neuroprotection.
Collapse
Affiliation(s)
- Tatevik Sargsyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia; (T.S.); (L.S.)
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Hayarpi M. Simonyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Lala Stepanyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia; (T.S.); (L.S.)
| | - Avetis Tsaturyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia; (T.S.); (L.S.)
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Raffaele Pastore
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via F. De Santis, 86100 Campobasso, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via F. De Santis, 86100 Campobasso, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
2
|
Lei M, Wu J, Tan Y, Shi Y, Yang W, Tu H, Tan W. β-asarone protects against age-related motor decline via activation of SKN-1/Nrf2 and subsequent induction of GST-4. Pharmacol Res 2024; 209:107450. [PMID: 39366648 DOI: 10.1016/j.phrs.2024.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Decelerating motor decline is important for promoting healthy aging in the elderly population. Acorus tatarinowii Schott is a traditional Chinese medicine that contains β-asarone as a pharmacologically active constituent. We found that β-asarone can decelerate motor decline in various age groups of Caenorhabditis elegans, while concurrently prolonging their lifespan and modulating synaptic transmission. To understand the mechanisms of its efficacy in motor improvement, we investigated and discovered that mitochondrial fragmentation, a marker for aging, is delayed after β-asarone treatment. Moreover, their efficacy is blocked by dysfunctional mitochondria. Corresponding to their role in regulating mitochondrial homeostasis, we found that SKN-1/Nrf2 and GST-4 are critical in the β-asarone treatment, and they appear to be activated via the insulin/IGF-1 signaling pathway. Well-developed intestinal microvilli are required for this process. Our study demonstrates the efficacy and mechanism of β-asarone treatment in age-related motor decline, contributing to the discovery of drugs for achieving healthy aging.
Collapse
Affiliation(s)
- Ming Lei
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Jiayu Wu
- College of Biology and Environmental Science, Jishou, Jishou University, Jishou, Hunan, China.
| | - Yanheng Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Yang Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Wuyan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Weihong Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Duan F, Ju T, Song C, Liu M, Xiong Y, Han X, Lu W. Synergetic effect of β-asarone and cannabidiol against Aβ aggregation in vitro and in vivo. Comput Struct Biotechnol J 2023; 21:3875-3884. [PMID: 37602231 PMCID: PMC10432915 DOI: 10.1016/j.csbj.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disorder, and it is unlikely that any single drug or intervention will be very successful. The pathophysiology of Alzheimer's disease involves a range of complicated biological processes, including the accumulation of beta-amyloid protein and tau protein. Given the complexity of AD and amyloid accumulation, a combination of interventions remains to be further explored. Here, we investigated the potential of combining β-asarone and cannabidiol (CBD) as a treatment for AD. The study analyzed the combined effects of these two phytochemicals on beta-amyloid (Aβ) protein aggregation and toxicity in bulk solution, in cells as well as in C.elegans. We detailed the morphological and size changes of Aβ40 aggregates in the presence of β-asarone and cannabidiol. More importantly, the presence of both compounds synergistically inhibited apoptosis and downregulated relative gene expression in cells, and that it may also slow aging, decrease the rate of paralysis, enhance learning capacity, and boost autophagy activity in C.elegans. Our studies suggest that multiple drugs, like β-asarone and CBD, may be potentially developed as a medicinal adjunct in the treatment of AD, although further clinical trials are needed to determine the efficacy and safety of this combination treatment in humans.
Collapse
Affiliation(s)
- Fangyuan Duan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Ju
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Chen Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Mengyao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Yi Xiong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Xue Han
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT. Harbin Institute of Technology, Chongqing 401120, China
| |
Collapse
|
4
|
Jung MJ, Kim N, Jeon SH, Gee MS, Kim JW, Lee JK. Eugenol relieves the pathological manifestations of Alzheimer's disease in 5×FAD mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154930. [PMID: 37348246 DOI: 10.1016/j.phymed.2023.154930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/27/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and excessive neuroinflammation, resulting in neuronal cell death and cognitive impairments. Eugenol, a phenylpropene, is the main component of Syzygium aromaticum L. (Myrtaceae) and has multiple therapeutic effects, including neuroprotective and anti-inflammatory effects, through multimodal mechanisms. PURPOSE We aimed to investigate the effect of eugenol on AD pathologies using a 5× familiar AD (5×FAD) mouse model. METHODS Eight-month-old 5×FAD and wild-type mice were administered with eugenol (10 or 30 mg/kg/day, p.o) for 2 months. Y-maze and Morris water maze tests were performed to assess the cognitive function of mice. After the behavioral test, molecular analysis was conducted to investigate the therapeutic mechanism of eugenol. RESULTS Our findings indicate that eugenol treatment effectively mitigated cognitive impairments in 5×FAD mice. This beneficial effect was associated with a decrease in AD pathologies, including neuronal cell loss and Aβ deposition. Specifically, eugenol inhibited necroptosis activation and increased microglial phagocytosis, which were the underlying mechanisms for the observed reductions in neuronal cell loss and Aβ deposition, respectively. CONCLUSION Overall, our data suggest that eugenol would be a potential therapeutic candidate for AD.
Collapse
Affiliation(s)
- Min-Ji Jung
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Namkwon Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Ho Jeon
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Woon Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Huang T, Chen X, Chen D, Yu B, He J, Yan H, Luo Y, Zheng P, Chen H, Huang Z. Eugenol promotes appetite through TRP channels mediated-CaMKK2/AMPK signaling pathway. Phytother Res 2023. [PMID: 36762415 DOI: 10.1002/ptr.7768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/22/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
Eugenol is a major component of clove oil. A recent study found that inhalation of eugenol promoted the appetite of mice. However, whether oral ingestion of eugenol promoted appetite is unclear and its mechanism await study. Here, mice were divided into four treatments (n = 20) and fed a basal diet supplemented with 0%, 0.005%, 0.01% and 0.02% eugenol for 4 weeks. In addition, mice (n = 7) were injected intraperitoneally with 3 mg/kg body weight eugenol. Our data showed that feeding mice with 0.01% and 0.02% eugenol promoted their appetite. In addition, the short-term intraperitoneal injection of eugenol enhanced the feed intake in mice within 1 h. Further studies found that dietary eugenol increased orexigenic factors expression and decreased anorexigenic factors expression in mice. We then carried out N38 cell experiments to explore the transient receptor potential (TRP) channels-dependent mechanism of eugenol in promoting appetite. We found that eugenol activated the TRP channels mediated-CaMKK2/AMPK signaling pathway in the hypothalamus and N38 cells. Besides, the inhibition of TRPV1 and AMPK eliminated the upregulation of eugenol on the agouti-related protein level in N38 cells. In conclusion, the study suggested that eugenol promotes appetite through TRPV1 mediated-CaMKK2/AMPK signaling pathway.
Collapse
Affiliation(s)
- Tengteng Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, People's Republic of China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Kim CJ, Kwak TY, Bae MH, Shin HK, Choi BT. Therapeutic Potential of Active Components from Acorus gramineus and Acorus tatarinowii in Neurological Disorders and Their Application in Korean Medicine. J Pharmacopuncture 2022; 25:326-343. [PMID: 36628348 PMCID: PMC9806153 DOI: 10.3831/kpi.2022.25.4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological disorders represent a substantial healthcare burden worldwide due to population aging. Acorus gramineus Solander (AG) and Acorus tatarinowii Schott (AT), whose major component is asarone, have been shown to be effective in neurological disorders. This review summarized current information from preclinical and clinical studies regarding the effects of extracts and active components of AG and AT (e.g., α-asarone and β-asarone) on neurological disorders and biomedical targets, as well as the mechanisms involved. Databases, including PubMed, Embase, and RISS, were searched using the following keywords: asarone, AG, AT, and neurological disorders, including Alzheimer's disease, Parkinson's disease, depression and anxiety, epilepsy, and stroke. Meta-analyses and reviews were excluded. A total of 873 studies were collected. A total of 89 studies were selected after eliminating studies that did not meet the inclusion criteria. Research on neurological disorders widely reported that extracts or active components of AG and AT showed therapeutic efficacy in treating neurological disorders. These components also possessed a wide array of neuroprotective effects, including reduction of pathogenic protein aggregates, antiapoptotic activity, modulation of autophagy, anti-inflammatory and antioxidant activities, regulation of neurotransmitters, activation of neurogenesis, and stimulation of neurotrophic factors. Most of the included studies were preclinical studies that used in vitro and in vivo models, and only a few clinical studies have been performed. Therefore, this review summarizes the current knowledge on AG and AT therapeutic effects as a basis for further clinical studies, and clinical trials are required before these findings can be applied to human neurological disorders.
Collapse
Affiliation(s)
- Cheol Ju Kim
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Tae Young Kwak
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Min Hyeok Bae
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| | - Byung Tae Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| |
Collapse
|
7
|
Protective Activity of Aspirin Eugenol Ester on Paraquat-Induced Cell Damage in SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6697872. [PMID: 34394831 PMCID: PMC8360752 DOI: 10.1155/2021/6697872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. The aim of this study was to investigate the protective effect of AEE on paraquat- (PQ-) induced cell damage of SH-SY5Y human neuroblastoma cells and its potential molecular mechanism. There was no significant change in cell viability when AEE was used alone. PQ treatment reduced cell viability in a concentration-dependent manner. However, AEE reduced the PQ-induced loss of cell viability. Flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and 4′6-diamidino-2-phenylindole (DAPI) staining were used to evaluate cell apoptosis. Compared with the PQ group, AEE pretreatment could significantly inhibit PQ-induced cell damage. AEE pretreatment could reduce the cell damage of SH-SY5Y cells induced by PQ via reducing superoxide anion, intracellular reactive oxygen species (ROS), and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). At the same time, AEE could increase the activity of glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) and decrease the activity of malondialdehyde (MDA). The results showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of caspase-3 and Bax was significantly increased in the PQ group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of caspase-3 and Bax in SH-SY5Y cells. PI3K inhibitor LY294002 and the silencing of PI3K by shRNA could weaken the protective effect of AEE on PQ-induced SH-SY5Y cells. Therefore, AEE has a protective effect on PQ-induced SH-SY5Y cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.
Collapse
|
8
|
Li Z, Ma J, Kuang Z, Jiang Y. β-Asarone Attenuates Aβ-Induced Neuronal Damage in PC12 Cells Overexpressing APPswe by Restoring Autophagic Flux. Front Pharmacol 2021; 12:701635. [PMID: 34393783 PMCID: PMC8355419 DOI: 10.3389/fphar.2021.701635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory damage and cognitive dysfunction. Studies have shown that defective autophagic flux is associated with neuronal dysfunction. Modulating autophagic activity represents a potential method of combating AD. In Chinese medicine, Acori Tatarinowii Rhizoma is used to treat dementia and amnesia. β-Asarone, an active component of this rhizome can protect PC12 cells from Aβ-induced injury and modulate expression of autophagy factors. However, its cytoprotective mechanisms have yet to be discerned. It is unclear whether β-asarone affects autophagic flux and, if it does, whether this effect can alleviate Aβ cell damage. In the present study, we constructed APPswe-overexpressing PC12 cell line as a cell model of Aβ-induced damage and assessed expression of autophagic flux-related proteins as well as the number and morphology of autophagosomes and autolysosomes. Our results show that β-asarone decreases the expression levels of Beclin-1, p62, LC3-Ⅱ, and Aβ1-42. β-Asarone reduced the number of autophagosomes and increased the number of autolysosomes, as determined by confocal laser scanning microscopy and transmission electron microscopy. Our results suggest that β-asarone can protect PC12 cells from Aβ-induced damage by promoting autophagic flux, which may be achieved by enhancing autophagosome-lysosome fusion and/or lysosome function.
Collapse
Affiliation(s)
- Zhenwan Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin Ma
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongsheng Kuang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
10
|
The Essential Oil from Acori Tatarinowii Rhizome (the Dried Rhizome of Acorus tatarinowii Schott) Prevents Hydrogen Peroxide-Induced Cell Injury in PC12 Cells: A Signaling Triggered by CREB/PGC-1 α Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4845028. [PMID: 32215040 PMCID: PMC7085381 DOI: 10.1155/2020/4845028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/26/2019] [Accepted: 11/23/2019] [Indexed: 12/25/2022]
Abstract
Acori Tatarinowii Rhizome (ATR, the dried rhizome of Acorus tatarinowii Schott), a well-recognized traditional Chinese herbal medicine, is prescribed to treat neurological disorders. The essential oil is considered as the active fraction of ATR, and the neuroprotection of ATR essential oil (ATEO) is proven, including the protection against oxidative stress. However, the cellular mechanism of ATEO against oxidative stress has not been fully illustrated. In this study, to investigate the cellular mechanism of ATEO, the cytoprotective effect of ATEO against H2O2-induced injury was revealed in PC12 cells. ATEO treatment increased the viability of cells affected by H2O2-mediated injury, inhibited reactive oxygen species (ROS) accumulation, and induced the expression of several antioxidant proteins (SODs, GPx, and UCPs). The cytoprotective effect of ATEO was related to upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression, which was counteracted by PGC-1α specific knockdown. Using inhibitor of protein kinase A (PKA), we found that cAMP-response element binding protein (CREB) activation was involved in ATEO-induced PGC-1α expression. Taken together, we suggest that ATEO effectively prevents H2O2-induced cell injury possibly through the activation of CREB/PGC-1α signaling in PC12 cells. The results provide a molecular insight into the effect of ATEO on cytoprotection against oxidative stress.
Collapse
|
11
|
Kotormán M, Varga A, Kasi PB, Nemcsók J. Inhibition of the formation of amyloid-like fibrils with spices, especially cloves. ACTA BIOLOGICA HUNGARICA 2018; 69:385-394. [PMID: 30587021 DOI: 10.1556/018.69.2018.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the study of inhibition of amyloid fibril formation, α-chymotrypsin protein was developed in 55% ethanol at pH 7.0. We investigated the inhibitory effect of different spices on amyloid fibril formation using turbidity measurements and Congo red binding assays. We found that all spices except the black pepper and caraway seed prevented fibril formation. The highest inhibition was measured with the clove, which reduced the amount of aggregates by 90%. We studied the inhibitory effect of the cloves at different concentrations on aggregation, it was found that the inhibitory activity of clove is dependent on concentration. We have measured the total phenolic content of the spice extracts too. Based on all these findings we have come to the following conclusion: Our results indicate that spices can contain other compounds too - not only phenolic compounds - which influence the formation of amyloid fibrils, and the effectiveness of various phenolic compounds are different.
Collapse
Affiliation(s)
- Márta Kotormán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
| | - Alexandra Varga
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
| | - Phanindra Babu Kasi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - János Nemcsók
- Department of Biology, Pedagogical Faculty, Selye János University, Bratislavská cesta 3322, SK-94501 Komarno, Slovak Republic
| |
Collapse
|
12
|
Abstract
Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) are involved in the pathogenesis of Alzheimer's disease (AD), which is characterized by the accumulation of β-amyloid protein (Aβ) and tau hyperphosphorylation. However, the gaps in our knowledge of the roles of COX-2 and PGs in AD have not been filled. Here, we summarized the literature showing that COX-2 dysregulation obviously influences abnormal cleavage of β-amyloid precursor protein, aggregation and deposition of Aβ in β-amyloid plaques and the inclusion of phosphorylated tau in neurofibrillary tangles. Neuroinflammation, oxidative stress, synaptic plasticity, neurotoxicity, autophagy, and apoptosis have been assessed to elucidate the mechanisms of COX-2 regulation of AD. Notably, an imbalance of these factors ultimately produces cognitive decline. The current review substantiates our understanding of the mechanisms of COX-2-induced AD and establishes foundations for the design of feasible therapeutic strategies to treat AD.-Guan, P.-P., Wang, P. Integrated communications between cyclooxygenase-2 and Alzheimer's disease.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
13
|
Ramalingam P, Ganesan P, Choi DK, Ko YT. Development of a selective and sensitive LC–MS/MS method for the quantification of α-asarone in mouse plasma and its application to pharmacokinetic studies. J Pharm Biomed Anal 2018; 151:284-290. [DOI: 10.1016/j.jpba.2018.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/29/2022]
|
14
|
Phytochemical allylguaiacol exerts a neuroprotective effect on hippocampal cells and ameliorates scopolamine-induced memory impairment in mice. Behav Brain Res 2017; 339:261-268. [PMID: 29126931 DOI: 10.1016/j.bbr.2017.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 11/21/2022]
Abstract
Allylguaiacol is a phytochemical occurring in various plants such as cloves, cinnamon, basil, and nutmeg. Pharmacological effects of allylguaiacol include antimicrobial, anti-inflammatory, anticancer, antioxidant, and neuroprotective activity. Although allylguaiacol is considered to have neuroprotective effects, there is no report on its regulatory mechanisms at the molecular level. In the present study, we investigated the mechanisms of allylguaiacol as an antioxidant and neuroprotective agent using hydrogen peroxide (H2O2)-treated HT22 hippocampal cells. Allylguaiacol increased the scavenging activities of free radicals 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), and enhanced the expression of antioxidant enzymes manganese superoxide dismutase (MnSOD) and catalase. In addition, allylguaiacol inhibited H2O2-induced damage of HT22 with increasing production of brain-derived neurotrophic factor (BDNF), phosphorylation of phosphoinositide 3-kinase (PI3K), and cyclic AMP response element-binding protein (CREB). Furthermore, antibody microarray data revealed that phospho-regulation of nuclear factor kappa B (NF-κB) p65 and death domain-associated protein (DAXX) is involved in protection against neuronal cell damage. In a mouse model of short-term memory impairment, allylguaiacol (2.5 or 5mg/kg) significantly ameliorated scopolamine-mediated cognitive impairment in a passive avoidance task. In addition, allylguaiacol significantly increased the expression of TrkA and B in the hippocampus from scopolamine-treated mice. Taken together, our findings suggest that allylguaiacol exerts a neuroprotective effect through the antioxidant activation and protein regulation of NF-κB p65 and DAXX-related signaling. The ameliorating effect of allylguaiacol may be useful for treatment of memory impairment in Alzheimer's and its related diseases.
Collapse
|
15
|
Dubey K, Anand BG, Shekhawat DS, Kar K. Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis. Sci Rep 2017; 7:40744. [PMID: 28145454 PMCID: PMC5286398 DOI: 10.1038/srep40744] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023] Open
Abstract
Eugenol has attracted considerable attention because of its potential for many pharmaceutical applications including anti-inflammatory, anti-tumorigenic and anti-oxidant properties. Here, we have investigated the effect of eugenol on amyloid formation of selected globular proteins. We find that both spontaneous and seed-induced aggregation processes of insulin and serum albumin (BSA) are significantly suppressed in the presence of eugenol. Isothermal titration calorimetric data predict a single binding site for eugenol-insulin complex confirming the affinity of eugenol for native soluble insulin species. We also find that eugenol suppresses amyloid-induced hemolysis. Our findings reveal the inherent ability of eugenol to stabilize native proteins and to delay the conversion of protein species of native conformation into β-sheet assembled mature fibrils, which seems to be crucial for its inhibitory effect.
Collapse
Affiliation(s)
- Kriti Dubey
- Department of Biology, Indian Institute of Technology Jodhpur, Rajasthan, 342011 India
| | - Bibin G Anand
- Department of Biology, Indian Institute of Technology Jodhpur, Rajasthan, 342011 India
| | - Dolat Singh Shekhawat
- Department of Biology, Indian Institute of Technology Jodhpur, Rajasthan, 342011 India
| | - Karunakar Kar
- Department of Biology, Indian Institute of Technology Jodhpur, Rajasthan, 342011 India.,School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
16
|
Qiu H, Li JH, Yin SB, Ke JQ, Qiu CL, Zheng GQ. Dihuang Yinzi, a Classical Chinese Herbal Prescription, for Amyotrophic Lateral Sclerosis: A 12-Year Follow-up Case Report. Medicine (Baltimore) 2016; 95:e3324. [PMID: 27057909 PMCID: PMC4998825 DOI: 10.1097/md.0000000000003324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease with no effective treatment and death within 2 to 5 years after symptom onset. Here, we reported a case of ALS patient using modified Dihuang Yinzi (DHYZ), a classical traditional Chinese medicine (TCM) prescription, who has survived 12 years with significant improvement in bulbar paralysis.A 41-year-old Chinese Han nationality woman was admitted to the hospital with complaints of weakened bilateral grip, slurred speech, stumbling, and muscle twitching for 3 years. The electromyography showed neurogenic injury in bilateral upper limbs and tongue. She was diagnosed with ALS according to the revised El escorial criteria. The patient was orally administrated with Riluzole 100 mg daily for 10 months and then stopped. Subsequently, she resorted to TCM. Based on the TCM theory, the patient was diagnosed with Yinfei syndrome because of kidney deficiency. DHYZ was chosen because it has the function of replenishing kidney essence to treat Yinfei syndrome. Up to now, she has been using modified DHYZ continuously for 12 years. The patient survived with ALS and did not require permanent continuous ventilator. In addition, the symptoms of choking on liquids are improved, and the utility of 30 mL water swallow test was improved with grade 2. The symptoms of muscle fibrillations of limbs are also reduced. However, muscle strength worsened slowly. The repeated electromyography showed motor conduction amplitude reducing gradually and velocity not changing more when compared with the initial electromyography.Our findings suggested that DHYZ can be potentially used in ALS patients because of its multi-targeted neuroprotection and general safety, although ALS does not have a cure. In addition, we identified the area that is worthy of further study and DHYZ as a promising candidate for further clinical application and ALS trials. Rigorous randomized controlled trials are needed in the future.
Collapse
Affiliation(s)
- Hui Qiu
- From the Department of Internal Medicine of TCM, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou (HQ); Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou (J-hL, S-bY, J-qK, G-qZ); and Department of Neurology, Zhejiang Provincial Hospital of TCM, the First Affiliated Hospital of Zhejiang Chinese Medical University (C-lQ), Hangzhou, China
| | | | | | | | | | | |
Collapse
|
17
|
Luo HB, Li Y, Liu ZJ, Cao L, Zhang ZQ, Wang Y, Zhang XY, Liu Z, Shi XQ. Protective effect of tetrahydroxy stilbene glucoside on learning and memory by regulating synaptic plasticity. Neural Regen Res 2016; 11:1480-1486. [PMID: 27857754 PMCID: PMC5090853 DOI: 10.4103/1673-5374.191223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Damage to synaptic plasticity induced by neurotoxicity of amyloid-beta is regarded to be one of the pathological mechanisms of learning and memory disabilities in Alzheimer's disease patients. This study assumed that the damage of amyloid-beta to learning and memory abilities was strongly associated with the changes in the Fyn/N-methyl-D-aspartate receptor 2B (NR2B) expression. An APP695V7171 transgenic mouse model of Alzheimer's disease was used and treatment with tetrahydroxy-stilbene glucoside was administered intragastrically. Results showed that intragastric administration of tetrahydroxy-stilbene glucoside improved the learning and memory abilities of the transgenic mice through increasing NR2B receptors and Fyn expression. It also reversed parameters for synaptic interface structure of gray type I. These findings indicate that tetrahydroxy stilbene glucoside has protective effects on the brain, and has prospects for its clinical application to improve the learning and memory abilities and treat Alzheimer's disease.
Collapse
Affiliation(s)
- Hong-Bo Luo
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Yun Li
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Zun-Jing Liu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Li Cao
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Zhi-Qiang Zhang
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Yong Wang
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Xiao-Yan Zhang
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Zhao Liu
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Xiang-Qun Shi
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| |
Collapse
|