1
|
Minarsky A, Krymsky S, Soulé C, Morozova N. Model of Morphogenesis with Repelling Signaling. Acta Biotheor 2023; 71:4. [DOI: 10.1007/s10441-022-09454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
|
2
|
Manicka S, Levin M. Minimal Developmental Computation: A Causal Network Approach to Understand Morphogenetic Pattern Formation. ENTROPY (BASEL, SWITZERLAND) 2022; 24:107. [PMID: 35052133 PMCID: PMC8774453 DOI: 10.3390/e24010107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022]
Abstract
What information-processing strategies and general principles are sufficient to enable self-organized morphogenesis in embryogenesis and regeneration? We designed and analyzed a minimal model of self-scaling axial patterning consisting of a cellular network that develops activity patterns within implicitly set bounds. The properties of the cells are determined by internal 'genetic' networks with an architecture shared across all cells. We used machine-learning to identify models that enable this virtual mini-embryo to pattern a typical axial gradient while simultaneously sensing the set boundaries within which to develop it from homogeneous conditions-a setting that captures the essence of early embryogenesis. Interestingly, the model revealed several features (such as planar polarity and regenerative re-scaling capacity) for which it was not directly selected, showing how these common biological design principles can emerge as a consequence of simple patterning modes. A novel "causal network" analysis of the best model furthermore revealed that the originally symmetric model dynamically integrates into intercellular causal networks characterized by broken-symmetry, long-range influence and modularity, offering an interpretable macroscale-circuit-based explanation for phenotypic patterning. This work shows how computation could occur in biological development and how machine learning approaches can generate hypotheses and deepen our understanding of how featureless tissues might develop sophisticated patterns-an essential step towards predictive control of morphogenesis in regenerative medicine or synthetic bioengineering contexts. The tools developed here also have the potential to benefit machine learning via new forms of backpropagation and by leveraging the novel distributed self-representation mechanisms to improve robustness and generalization.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
| |
Collapse
|
3
|
Pezzulo G, LaPalme J, Durant F, Levin M. Bistability of somatic pattern memories: stochastic outcomes in bioelectric circuits underlying regeneration. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190765. [PMID: 33550952 PMCID: PMC7935058 DOI: 10.1098/rstb.2019.0765] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Nervous systems' computational abilities are an evolutionary innovation, specializing and speed-optimizing ancient biophysical dynamics. Bioelectric signalling originated in cells' communication with the outside world and with each other, enabling cooperation towards adaptive construction and repair of multicellular bodies. Here, we review the emerging field of developmental bioelectricity, which links the field of basal cognition to state-of-the-art questions in regenerative medicine, synthetic bioengineering and even artificial intelligence. One of the predictions of this view is that regeneration and regulative development can restore correct large-scale anatomies from diverse starting states because, like the brain, they exploit bioelectric encoding of distributed goal states-in this case, pattern memories. We propose a new interpretation of recent stochastic regenerative phenotypes in planaria, by appealing to computational models of memory representation and processing in the brain. Moreover, we discuss novel findings showing that bioelectric changes induced in planaria can be stored in tissue for over a week, thus revealing that somatic bioelectric circuits in vivo can implement a long-term, re-writable memory medium. A consideration of the mechanisms, evolution and functionality of basal cognition makes novel predictions and provides an integrative perspective on the evolution, physiology and biomedicine of information processing in vivo. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Joshua LaPalme
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Fallon Durant
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
4
|
Bhavsar MB, Leppik L, Costa Oliveira KM, Barker JH. Role of Bioelectricity During Cell Proliferation in Different Cell Types. Front Bioeng Biotechnol 2020; 8:603. [PMID: 32714900 PMCID: PMC7343900 DOI: 10.3389/fbioe.2020.00603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/18/2020] [Indexed: 11/26/2022] Open
Abstract
Most living organisms possess varying degrees of regenerative capabilities but how these regenerative processes are controlled is still poorly understood. Naturally occurring bioelectric voltages (like Vmem) are thought to be playing instructive role in tissue regeneration, as well as embryonic development. The different distribution of ions on the either side of the cell membrane results in intra- and extra-cellular voltage differences, known as membrane potential or Vmem. The relationship between Vmem and cell physiology is conserved in a wide range of cell types and suggests that Vmem regulation is a fundamental control mechanism for regeneration related processes e.g., proliferation and differentiation. In the present study we measured Vmem in three different cell types (human osteogenic sarcoma cell line (OSC), rat bone marrow derived mesenchymal stem cells (BM-MSC), and rat dermal fibroblasts) and characterized the relationship between their Vmem and proliferation. In order to find out if Vmem controls proliferation, or visa-versa, we blocked and then unblocked Na+/K+-exchanging ATPase using ouabain and measured the proliferation. Our results demonstrate that Vmem can be pharmacologically manipulated to control proliferation in certain cell types like BM-MSC. Taken together, it is clear that control of bioelectrical properties in non-excitable cells could prove to be potentially a useful tool in regenerative medicine efforts.
Collapse
Affiliation(s)
- Mit Balvantray Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt, Germany
| | - Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt, Germany
| | - Karla Mychellyne Costa Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt, Germany
| | - John H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt, Germany
| |
Collapse
|
5
|
Pietak A, Bischof J, LaPalme J, Morokuma J, Levin M. Neural control of body-plan axis in regenerating planaria. PLoS Comput Biol 2019; 15:e1006904. [PMID: 30990801 PMCID: PMC6485777 DOI: 10.1371/journal.pcbi.1006904] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/26/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
Control of axial polarity during regeneration is a crucial open question. We developed a quantitative model of regenerating planaria, which elucidates self-assembly mechanisms of morphogen gradients required for robust body-plan control. The computational model has been developed to predict the fraction of heteromorphoses expected in a population of regenerating planaria fragments subjected to different treatments, and for fragments originating from different regions along the anterior-posterior and medio-lateral axis. This allows for a direct comparison between computational and experimental regeneration outcomes. Vector transport of morphogens was identified as a fundamental requirement to account for virtually scale-free self-assembly of the morphogen gradients observed in planarian homeostasis and regeneration. The model correctly describes altered body-plans following many known experimental manipulations, and accurately predicts outcomes of novel cutting scenarios, which we tested. We show that the vector transport field coincides with the alignment of nerve axons distributed throughout the planarian tissue, and demonstrate that the head-tail axis is controlled by the net polarity of neurons in a regenerating fragment. This model provides a comprehensive framework for mechanistically understanding fundamental aspects of body-plan regulation, and sheds new light on the role of the nervous system in directing growth and form.
Collapse
Affiliation(s)
- Alexis Pietak
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
| | - Johanna Bischof
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Joshua LaPalme
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Junji Morokuma
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
6
|
Levin M, Pietak AM, Bischof J. Planarian regeneration as a model of anatomical homeostasis: Recent progress in biophysical and computational approaches. Semin Cell Dev Biol 2019; 87:125-144. [PMID: 29635019 PMCID: PMC6234102 DOI: 10.1016/j.semcdb.2018.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Planarian behavior, physiology, and pattern control offer profound lessons for regenerative medicine, evolutionary biology, morphogenetic engineering, robotics, and unconventional computation. Despite recent advances in the molecular genetics of stem cell differentiation, this model organism's remarkable anatomical homeostasis provokes us with truly fundamental puzzles about the origin of large-scale shape and its relationship to the genome. In this review article, we first highlight several deep mysteries about planarian regeneration in the context of the current paradigm in this field. We then review recent progress in understanding of the physiological control of an endogenous, bioelectric pattern memory that guides regeneration, and how modulating this memory can permanently alter the flatworm's target morphology. Finally, we focus on computational approaches that complement reductive pathway analysis with synthetic, systems-level understanding of morphological decision-making. We analyze existing models of planarian pattern control and highlight recent successes and remaining knowledge gaps in this interdisciplinary frontier field.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States.
| | - Alexis M Pietak
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
7
|
Tyler SEB. Nature's Electric Potential: A Systematic Review of the Role of Bioelectricity in Wound Healing and Regenerative Processes in Animals, Humans, and Plants. Front Physiol 2017; 8:627. [PMID: 28928669 PMCID: PMC5591378 DOI: 10.3389/fphys.2017.00627] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 08/11/2017] [Indexed: 12/24/2022] Open
Abstract
Natural endogenous voltage gradients not only predict and correlate with growth and development but also drive wound healing and regeneration processes. This review summarizes the existing literature for the nature, sources, and transmission of information-bearing bioelectric signals involved in controlling wound healing and regeneration in animals, humans, and plants. It emerges that some bioelectric characteristics occur ubiquitously in a range of animal and plant species. However, the limits of similarities are probed to give a realistic assessment of future areas to be explored. Major gaps remain in our knowledge of the mechanistic basis for these processes, on which regenerative therapies ultimately depend. In relation to this, it is concluded that the mapping of voltage patterns and the processes generating them is a promising future research focus, to probe three aspects: the role of wound/regeneration currents in relation to morphology; the role of endogenous flux changes in driving wound healing and regeneration; and the mapping of patterns in organisms of extreme longevity, in contrast with the aberrant voltage patterns underlying impaired healing, to inform interventions aimed at restoring them.
Collapse
|