1
|
Teder T, Haeggström JZ, Airavaara M, Lõhelaid H. Cross-talk between bioactive lipid mediators and the unfolded protein response in ischemic stroke. Prostaglandins Other Lipid Mediat 2023; 168:106760. [PMID: 37331425 DOI: 10.1016/j.prostaglandins.2023.106760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Ischemic cerebral stroke is a severe medical condition that affects about 15 million people every year and is the second leading cause of death and disability globally. Ischemic stroke results in neuronal cell death and neurological impairment. Current therapies may not adequately address the deleterious metabolic changes and may increase neurological damage. Oxygen and nutrient depletion along with the tissue damage result in endoplasmic reticulum (ER) stress, including the Unfolded Protein Response (UPR), and neuroinflammation in the affected area and cause cell death in the lesion core. The spatio-temporal production of lipid mediators, either pro-inflammatory or pro-resolving, decides the course and outcome of stroke. The modulation of the UPR as well as the resolution of inflammation promotes post-stroke cellular viability and neuroprotection. However, studies about the interplay between the UPR and bioactive lipid mediators remain elusive and this review gives insights about the crosstalk between lipid mediators and the UPR in ischemic stroke. Overall, the treatment of ischemic stroke is often inadequate due to lack of effective drugs, thus, this review will provide novel therapeutical strategies that could promote the functional recovery from ischemic stroke.
Collapse
Affiliation(s)
- Tarvi Teder
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Helike Lõhelaid
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
2
|
Senol N, Oguzoglu AS, Erzurumlu Y, Ascı H, Savran M, Gulle K, Ilhan I, Sadef M, Hasseyid N, Goksel HM. Modulation of Salubrinal-Mediated Endoplasmic Reticulum Stress in an Experimental Subarachnoid Hemorrhage Model. World Neurosurg 2021; 153:e488-e496. [PMID: 34245883 DOI: 10.1016/j.wneu.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Perfusion abnormalities due to vasospasm remain a major cause of morbidity and mortality in subarachnoid hemorrhage (SAH). Despite a large number of clinical trials, therapeutic options with strong evidence for prevention and treatment of cerebral vasospasm are rare. In this study, we aimed to evaluate the neuroprotective effect of salubrinal (SLB) in endoplasmic reticulum stress-induced apoptosis, a catastrophic consequence of vasospasm. METHODS Thirty-two Wistar albino rats were divided into 4 groups of 8 rats each: control group, SAH, SAH+SLB, and SAH+nimodipine (NMN). In the SAH+SLB group, intraperitoneal SLB (1 mg/kg dose) administered 30 minutes after establishment of SAH, and in the SAH+NMN group, intraperitoneal NMN (0.1 mg/kg dose) was also administered 30 minutes after SAH. RESULTS Higher total antioxidant status level, lower oxidative stress index, and significantly higher vascular endothelial growth factor-A (VEGF-A) level were detected in the SAH+SLB and SAH+NMN groups compared with the SAH group. There was a significant increase in eukaryotic translation initiation factor-2 alpha (elF2α) level in the SAH+SLB group compared with the SAH group. Histopathological evaluation revealed decrease in the subarachnoid hemorrhagic area, as well as in cortical edema and apoptotic bodies in the SAH+SLB and SAH+NMN groups. There was a significant decrease in caspase-3 staining in the SAH+SLB group, and the levels were significantly less in the SAH+NMN group than the SAH and SAH+SLB groups. CONCLUSIONS SLB, selective inhibitor of eIF2α dephosphorylation, and NMN, a calcium channel blocker, can ameliorate SAH-induced damage. Inhibition of eIF2α dephosphorylation and enhanced VEGF-A production with SLB may protect brain tissue from apoptosis.
Collapse
Affiliation(s)
- Nilgun Senol
- Department of Neurosurgery, Suleyman Demirel University, Isparta, Turkey.
| | | | - Yalcin Erzurumlu
- Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey
| | - Halil Ascı
- Department of Medical Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Mehtap Savran
- Department of Medical Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Kanat Gulle
- Department of Histology and Embryology, Suleyman Demirel University, Isparta, Turkey
| | - Ilter Ilhan
- Department of Medical Biochemistry, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Sadef
- Department of Neurosurgery, Suleyman Demirel University, Isparta, Turkey
| | - Nursel Hasseyid
- Department of Medical Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Hakan Murat Goksel
- Department of Neurosurgery, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
3
|
Jiang L, Su HB, Zhang YD, Zhou JS, Geng W, Chen H, Xu Q, Yin X, Chen YC. Collateral vessels on magnetic resonance angiography in endovascular-treated acute ischemic stroke patients associated with clinical outcomes. Oncotarget 2017; 8:81529-81537. [PMID: 29113412 PMCID: PMC5655307 DOI: 10.18632/oncotarget.21081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/03/2017] [Indexed: 12/03/2022] Open
Abstract
Purpose Collateral vessels were considered to be related with outcome in endovascular-treated acute ischemic stroke patients. This study aimed to evaluate whether the collateral vessels on magnetic resonance angiography (MRA) could predict the clinical outcome. Materials and Methods Acute stroke patients with internal carotid artery or middle cerebral artery occlusion within 6 hours of symptom onset were included. All patients underwent MRI and received endovascular treatment. The collateral circulations at the Sylvian fissure and the leptomeningeal convexity were evaluated. The preoperative and postoperative infarct volume was measured. The clinical outcome was evaluated by mRS score at 3 months after stroke. Results Of 55 patients, Cases with insufficient collateral circulation at the Sylvian fissure and leptomeningeal convexity showed that the NIHSS score at arrival and preoperative infarct volume were significantly lower in mRS score of 0–2 (both P < 0.05) than mRS score of 3–6. Multivariate testing revealed age and collateral status at the leptomeningeal convexity were independent of the clinical outcome at 3 months after stroke (odds ratio (95% confidence interval): 1.094 (1.025–1.168); 9.542 (1.812–50.245) respectively). The change of infarct volume in the group with mRS score of 0–2 was smaller than that with mRS score of 3–6. While multivariate logistic models showed that postoperative infarct volume was non-significant in predicting the clinical outcome after stroke. Conclusions The extent of collateral circulation at the leptomeningeal convexity may be useful for predicting the functional recovery while the relationship between postoperative infarct volume and clinical outcome still requires for further study.
Collapse
Affiliation(s)
- Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hao-Bo Su
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jun-Shan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Geng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Quan Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Hu Y, Lu X, Xu Y, Lu L, Yu S, Cheng Q, Yang B, Tsui CK, Ye D, Huang J, Liang X. Salubrinal attenuated retinal neovascularization by inhibiting CHOP-HIF1α-VEGF pathways. Oncotarget 2017; 8:77219-77232. [PMID: 29100382 PMCID: PMC5652775 DOI: 10.18632/oncotarget.20431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/12/2017] [Indexed: 12/30/2022] Open
Abstract
Retinal neovascularization (RNV) related disease is the leading cause of irreversible blindness in the world. The aim of this study is to identify whether salubrinal could attenuate RNV by inhibiting CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP)- hypoxia inducible factors 1α (HIF1α) -vascular endothelial growth factor (VEGF) pathways in both mouse retinal microvascular endothelial cells (mRMECs) and oxygen-induced retinopathy (OIR) mouse model. After being treated with salubrinal (20μmol/L) or CHOP-siRNA, mRMECs were exposed to a hypoxia environment. OIR mice were intraperitoneally injected with salubrinal (0.5 mg/kg/day) from P12 to P17. With salubrinal or CHOP-siRNA treatment, the elevated CHOP protein and mRNA levels in hypoxia-induced mRMECs were significantly decreased. HIF1α-VEGF pathways were activated under hypoxia condition, then HIF1α protein was degraded and VEGF secretion was down-regulated after salubrinal or CHOP-siRNA treatment. In OIR mice, the areas of RNV were markedly decreased with salubrinal treatment. Moreover, elevated expressions of CHOP, HIF1α and VEGF in retinas of OIR mice were all reduced after salubrinal treatment. It suggested that salubrinal attenuated RNV in mRMECs and OIR mice by inhibiting CHOP-HIF1α-VEGF pathways and could be a potential therapeutic target for hypoxia-induced retinal microangiopathy.
Collapse
Affiliation(s)
- Yaguang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Qiaochu Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Ching-Kit Tsui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
5
|
Lindholm D, Korhonen L, Eriksson O, Kõks S. Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease. Front Cell Dev Biol 2017; 5:48. [PMID: 28540288 PMCID: PMC5423914 DOI: 10.3389/fcell.2017.00048] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Unfolded stress response (UPR) is a conserved cellular pathway involved in protein quality control to maintain homeostasis under different conditions and disease states characterized by cell stress. Although three general schemes of and genes induced by UPR are rather well-established, open questions remain including the precise role of UPR in human diseases and the interactions between different sensor systems during cell stress signaling. Particularly, the issue how the normally adaptive and pro-survival UPR pathway turns into a deleterious process causing sustained endoplasmic reticulum (ER) stress and cell death requires more studies. UPR is also named a friend with multiple personalities that we need to understand better to fully recognize its role in normal physiology and in disease pathology. UPR interacts with other organelles including mitochondria, and with cell stress signals and degradation pathways such as autophagy and the ubiquitin proteasome system. Here we review current concepts and mechanisms of UPR as studied in different cells and model systems and highlight the relevance of UPR and related stress signals in various human diseases.
Collapse
Affiliation(s)
- Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of HelsinkiHelsinki, Finland.,Minerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - Laura Korhonen
- Minerva Foundation Institute for Medical ResearchHelsinki, Finland.,Division of Child Psychiatry, Helsinki University Central HospitalHelsinki, Finland
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Sulev Kõks
- Department of Pathophysiology, University of TartuTartu, Estonia.,Department of Reproductive Biology, Estonian University of Life SciencesTartu, Estonia
| |
Collapse
|
6
|
Integrated Stress Response as a Therapeutic Target for CNS Injuries. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6953156. [PMID: 28536699 PMCID: PMC5425910 DOI: 10.1155/2017/6953156] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/24/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022]
Abstract
Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury.
Collapse
|
7
|
Ruan L, Wang Y, Chen SC, Zhao T, Huang Q, Hu ZL, Xia NZ, Liu JJ, Chen WJ, Zhang Y, Cheng JL, Gao HC, Yang YJ, Sun HZ. Metabolite changes in the ipsilateral and contralateral cerebral hemispheres in rats with middle cerebral artery occlusion. Neural Regen Res 2017; 12:931-937. [PMID: 28761426 PMCID: PMC5514868 DOI: 10.4103/1673-5374.208575] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cerebral ischemia not only causes pathological changes in the ischemic areas but also induces a series of secondary changes in more distal brain regions (such as the contralateral cerebral hemisphere). The impact of supratentorial lesions, which are the most common type of lesion, on the contralateral cerebellum has been studied in patients by positron emission tomography, single photon emission computed tomography, magnetic resonance imaging and diffusion tensor imaging. In the present study, we investigated metabolite changes in the contralateral cerebral hemisphere after supratentorial unilateral ischemia using nuclear magnetic resonance spectroscopy-based metabonomics. The permanent middle cerebral artery occlusion model of ischemic stroke was established in rats. Rats were randomly divided into the middle cerebral artery occlusion 1-, 3-, 9- and 24-hour groups and the sham group. 1H nuclear magnetic resonance spectroscopy was used to detect metabolites in the left and right cerebral hemispheres. Compared with the sham group, the concentrations of lactate, alanine, γ-aminobutyric acid, choline and glycine in the ischemic cerebral hemisphere were increased in the acute stage, while the concentrations of N-acetyl aspartate, creatinine, glutamate and aspartate were decreased. This demonstrates that there is an upregulation of anaerobic glycolysis (shown by the increase in lactate), a perturbation of choline metabolism (suggested by the increase in choline), neuronal cell damage (shown by the decrease in N-acetyl aspartate) and neurotransmitter imbalance (evidenced by the increase in γ-aminobutyric acid and glycine and by the decrease in glutamate and aspartate) in the acute stage of cerebral ischemia. In the contralateral hemisphere, the concentrations of lactate, alanine, glycine, choline and aspartate were increased, while the concentrations of γ-aminobutyric acid, glutamate and creatinine were decreased. This suggests that there is a difference in the metabolite changes induced by ischemic injury in the contralateral and ipsilateral cerebral hemispheres. Our findings demonstrate the presence of characteristic changes in metabolites in the contralateral hemisphere and suggest that they are most likely caused by metabolic changes in the ischemic hemisphere.
Collapse
Affiliation(s)
- Lei Ruan
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yan Wang
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shu-Chao Chen
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tian Zhao
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qun Huang
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zi-Long Hu
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Neng-Zhi Xia
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jin-Jin Liu
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wei-Jian Chen
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yong Zhang
- Department of Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing-Liang Cheng
- Department of Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hong-Chang Gao
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yun-Jun Yang
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hou-Zhang Sun
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|