1
|
Dai Z, Hu T, Wei J, Wang X, Cai C, Gu Y, Hu Y, Wang W, Wu Q, Fang J. Network-based identification and mechanism exploration of active ingredients against Alzheimer's disease via targeting endoplasmic reticulum stress from traditional chinese medicine. Comput Struct Biotechnol J 2024; 23:506-519. [PMID: 38261917 PMCID: PMC10796977 DOI: 10.1016/j.csbj.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/25/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease that leads to dementia and poses a serious threat to the health of the elderly. Traditional Chinese medicine (TCM) presents as a promising novel therapeutic therapy for preventing and treating dementia. Studies have shown that natural products derived from kidney-tonifying herbs can effectively inhibit AD. Furthermore, endoplasmic reticulum (ER) stress is a critical factor in the pathology of AD. Regulation of ER stress is a crucial approach to prevent and treat AD. Thus, in this study, we first collected kidney-tonifying herbs, integrated chemical ingredients from multiple TCM databases, and constructed a comprehensive drug-target network. Subsequently, we employed the endophenotype network (network proximity) method to identify potential active ingredients in kidney-tonifying herbs that prevented AD via regulating ER stress. By combining the predicted outcomes, we discovered that 32 natural products could ameliorate AD pathology via regulating ER stress. After a comprehensive evaluation of the multi-network model and systematic pharmacological analyses, we further selected several promising compounds for in vitro testing in the APP-SH-SY5Y cell model. Experimental results showed that echinacoside and danthron were able to effectively reduce ER stress-mediated neuronal apoptosis by inhibiting the expression levels of BIP, p-PERK, ATF6, and CHOP in APP-SH-SY5Y cells. Overall, this study utilized the endophenotype network to preliminarily decipher the effective material basis and potential molecular mechanism of kidney-tonifying Chinese medicine for prevention and treatment of AD.
Collapse
Affiliation(s)
- Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tian Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Junwen Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xue Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chuipu Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou 570100, China
| | - Yunhui Hu
- Tasly Pharmaceutical Group Co., Ltd., Tianjin 300402, China
| | - Wenjia Wang
- Tasly Pharmaceutical Group Co., Ltd., Tianjin 300402, China
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou 570100, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
2
|
Roy A, Sen S, Das R, Shard A, Kumar H. Modulation of the LIMK Pathway by Myricetin: A Protective Strategy Against Neurological Impairments in Spinal Cord Injury. Neurospine 2024; 21:878-889. [PMID: 39363468 PMCID: PMC11456951 DOI: 10.14245/ns.2448546.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE Spinal cord injury (SCI), one of the major disabilities concerning central nervous system injury, results in permanent tissue loss and neurological impairment. The existing therapeutic options for SCI are limited and predominantly consist of chemical compounds. In this study, we delved into the neuroprotective effects of myricetin, a natural flavonoid compound, and the underlying mechanisms, specifically in the context of SCI, utilizing an in vivo model. Previously, our investigations revealed an elevation in the phosphorylated form of Lin-11, Isl-1, and Mec-3 kinase1 (LIMK1) at chronic time points postinjury, coinciding with neuronal loss and scar formation. Our primary objective here was to assess the potential neuroprotective properties of myricetin in SCI and to ascertain if these effects were linked to LIMK inhibition, a hitherto unexamined pathway to date. METHODS Computational docking and molecular dynamics simulation studies were performed to assess myricetin's potential to bind with LIMK. Then, using a rat contusion model, SCI was induced and different molecular techniques (Western blot, Evans Blue assay, quantitative reverse transcription polymerase chain reaction and immunohistochemistry) were performed to determine the effects of myricetin. RESULTS Remarkably, computational docking models identified myricetin as having a better interaction profile with LIMK than standard. Subsequent to myricetin treatment, a significant downregulation in phosphorylated LIMK expression was observed at chronic time points. This reduction correlated with a notable decrease in glial and fibrotic scar formation, and enhanced neuroprotection indicating a positive outcome in vivo. CONCLUSION In summary, our findings underscore myricetin's potential as a bioactive compound capable of attenuating SCI-induced injury cascades by targeting the LIMK pathway.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, Gandhinagar, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, Gandhinagar, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| |
Collapse
|
3
|
Wang L, Tang Z, Li B, Peng Y, Yang X, Xiao Y, Ni R, Qi XL. Myricetin ameliorates cognitive impairment in 3×Tg Alzheimer's disease mice by regulating oxidative stress and tau hyperphosphorylation. Biomed Pharmacother 2024; 177:116963. [PMID: 38889642 DOI: 10.1016/j.biopha.2024.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease is characterized by abnormal β-amyloid (Aβ) plaque accumulation, tau hyperphosphorylation, reactive oxidative stress, mitochondrial dysfunction and synaptic loss. Myricetin, a dietary flavonoid, has been shown to exert neuroprotective effects in vitro and in vivo. Here, we aimed to elucidate the mechanism and pathways involved in the protective effect of myricetin. METHODS The effect of myricetin was assessed on Aβ42 oligomer-treated neuronal SH-SY5Y cells and in 3×Tg mice. Behavioral tests were performed to assess the cognitive effects of myricetin (14 days, ip) in 3×Tg mice. The levels of beta-amyloid precursor protein (APP), synaptic and mitochondrial proteins, glycogen synthase kinase3β (GSK3β) and extracellular regulated kinase (ERK) 2 were assessed via Western blotting. Flow cytometry assays, immunofluorescence staining, and transmission electron microscopy were used to assess mitochondrial dysfunction and reactive oxidative stress. RESULTS We found that, compared with control treatment, myricetin treatment improved spatial cognition and learning and memory in 3×Tg mice. Myricetin ameliorated tau phosphorylation and the reduction in pre- and postsynaptic proteins in Aβ42 oligomer-treated neuronal SH-SY5Y cells and in 3×Tg mice. In addition, myricetin reduced reactive oxygen species generation, lipid peroxidation, and DNA oxidation, and rescued mitochondrial dysfunction via the associated GSK3β and ERK 2 signalling pathways. CONCLUSIONS This study provides new insight into the neuroprotective mechanism of myricetin in vitro in cell culture and in vivo in a mouse model of Alzheimer's disease.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Bo Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Xi Yang
- Guiyang Healthcare Vocational University, Guizhou ERC for Medical Resources & Healthcare Products (Guizhou Engineering Research Center for Medical Resources and Healthcare Products), Guiyang, Guizhou, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland.
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Constructed by the Province and Ministry, Guiyang, China.
| |
Collapse
|
4
|
Zhao J, Yang X, Leng X, Wang C, Schipper D. Rapid and reliable ratiometric fluorescence detection of isoquercitrin based on a high-nuclearity Zn(II)-Nd(III) nanomolecular sensor. Talanta 2024; 275:126170. [PMID: 38703478 DOI: 10.1016/j.talanta.2024.126170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Rapid and quantitative detection of isoquercitrin (Isq) has been attracting much attention due to its outstanding pharmacological and physiological activities. Herein, an interesting 48-metal Zn(II)-Nd(III) nanocluster (1, molecular sizes 1.3 × 2.8 × 3.1 nm) with salen-type Schiff base ligand was constructed as molecular sensor for the luminescence detection of Isq. 1 exhibits visible ligand-centered emission and NIR luminescence of Nd(III), and shows ratiometric fluorescence response to Isq with high sensitivity even in the presence of other interferences. The fluorescence sensing behavior can be expressed by a second-order equation I1060nm/I480nm = A*[Isq]2 + B*[Isq] + C, which is used to quantitatively analyze the Isq concentrations in DMF and FCS. The LODs to Isq for the ligand-centered and lanthanide emissions of 1 in DMF are 0.21 μM and 0.11 nM, respectively. The quenching of the ligand-centered emission of 1 caused by Isq is attributed to the competitive absorption of light energy and "inner effect", while, the luminescence enhancement is due to the "antenna effect".
Collapse
Affiliation(s)
- Jinni Zhao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Xiaoping Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Xilong Leng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chengri Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Desmond Schipper
- The University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station A5300, Austin, TX, 78712, United States
| |
Collapse
|
5
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
6
|
Hussain MS, Chaturvedi V, Goyal S, Singh S, Mir RH. An Update on the Application of Nano Phytomedicine as an Emerging
Therapeutic Tool for Neurodegenerative Diseases. CURRENT BIOACTIVE COMPOUNDS 2024; 20. [DOI: 10.2174/0115734072258656231013085318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2024]
Abstract
Abstract:
The existence of the blood-brain barrier (BBB), a densely woven network of blood
vessels and endothelial cells designed to prevent the infiltration of foreign substances into the
brain, the methods employed in developing treatments for neurodegenerative disorders (NDs)
such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Multiple sclerosis, Amyotrophic lateral sclerosis, and others, pose significant challenges and complexities. These illnesses
have had a terrible impact on the human population's health. Because early detection of these
problems is poor and no good therapy has been established, they have emerged as the biggest lifethreatening healthcare burden worldwide compared to other significant illnesses. Traditional drug
delivery techniques do not offer efficient treatment for NDs due to constraints in the BBB design,
efflux pumps, and metabolic enzyme expression. Nanotechnology has the potential to significantly enhance ND therapy by utilizing systems that have been bioengineered to engage with living
organisms at the cellular range. Compared to traditional techniques, nanotechnological technologies have several potential ways for crossing the BBB and increasing therapeutic efficacy in the
brain. The introduction and growth of nanotechnology indicate promising potential for overcoming this issue. Engineered nanoparticles coupled with therapeutic moieties and imaging agents
with dimensions ranging from 1-100 nm can improve effectiveness, cellular uptake, selective
transport, and drug delivery to the brain due to their changed physicochemical properties. Conjugates of nanoparticles and medicinal plants, or their constituents known as nano phytomedicine,
have recently gained importance in developing cutting-edge neuro-therapeutics due to their abundant natural supply, promising targeted delivery to the brain, and lower potential for adverse effects. This study summarizes the common NDs, their prevalence and pathogenesis, and potential
herbal nanoformulation for treating NDs.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Varunesh Chaturvedi
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Saloni Goyal
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Sandeep Singh
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Reyaz Hassan Mir
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and
Kashmir, 190006, India
| |
Collapse
|
7
|
Wang B, Xin Y, Tang X, Wang F, Hua S, Yang Y, Xu S, Gong H, Dong R, Lin Y, Li C, Lin X, Bi Y. Potential value of serum prealbumin and serum albumin in the identification of postoperative delirium in patients undergoing knee/hip replacement: an observational study and internal validation study. Front Neurol 2024; 15:1375383. [PMID: 38694772 PMCID: PMC11061387 DOI: 10.3389/fneur.2024.1375383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Background Postoperative delirium (POD) is a common postoperative neurological complication that can lead to a variety of postoperative complications. At present, the pathogenesis of POD is unclear. This study aims to explore the relationship between serum prealbumin and serum albumin and POD and whether serum prealbumin and serum albumin influence POD through POD core pathology. Objective We enrolled 500 Chinese Han patients between September 2020 to January 2023. We analyzed the risk and protective factors of POD using the multivariate logistic regression. We also assessed the predictive power of serum prealbumin, serum albumin, and both in combination with CSF POD biomarkers. We used Stata MP16.0. to examine whether the association between serum prealbumin and serum albumin and POD was mediated by CSF POD biomarkers, and conducted an internal validation study to verify the accuracy of the combination of serum prealbumin + serum albumin + CSF POD biomarkers for predicting POD. The model was visualized using ROC curve and decision curve analysis (DCA). DynNom and Shiny packages were used to create an online calculator. Ten patients who had POD occurring from February 2023 to October 2023 were selected for internal verification. Results Finally, a total of 364 patients were included in our study. Levels of serum prealbumin, serum albumin in the POD group were lower than those in the NPOD group. The lever of serum prealbumin, serum albumin were protective factors for POD. The relationship between serum prealbumin, serum albumin and POD was partially mediated by T-tau (12.28%) and P-tau (20.61%). The model combining serum prealbumin and serum albumin and POD biomarkers exhibited a relatively better discriminatory ability to predict POD. DCA also showed that the combination of serum prealbumin and serum albumin and POD biomarkers brought high predictive benefits to patients. The dynamic online calculator can accurately predict the occurrence of POD in the internal validation study. Conclusion Preoperative low serum prealbumin and serum albumin levels were the preoperative risk factors for POD, which is partly mediated by T-tau and P-tau. The model combining serum prealbumin and serum albumin and CSF POD biomarkers can accurately predict the occurrence of POD. Clinical trial registration http://www.clinicaltrials.gov, identifier ChiCTR2000033439.
Collapse
Affiliation(s)
- Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yan Xin
- Department of Endoscopy Center, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xinhui Tang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Fei Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Shuhui Hua
- Department of Anesthesiology, Binzhou Medical University, Binzhou, Shandong, China
| | - Yunchao Yang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Shanling Xu
- Department of Anesthesiology, Weifang Medical College, Weifang, Shandong, China
| | - Hongyan Gong
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Rui Dong
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yanan Lin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Chuan Li
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
8
|
Zong Z, Cheng X, Yang Y, Qiao J, Hao J, Li F. Association between dietary flavonol intake and mortality risk in the U.S. adults from NHANES database. Sci Rep 2024; 14:4572. [PMID: 38403683 PMCID: PMC10894877 DOI: 10.1038/s41598-024-55145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024] Open
Abstract
Using updated National Health and Nutrition Examination Survey (NHANES) follow-up data, and a large nationwide representative sample of adult U.S. citizens, the aim of this study was to explore the relationship between dietary flavonol intake, all-cause and cause-specific mortality risks. In this prospective cohort study based on NHANES (2007-2008, 2009-2010, and 2017-2018), a total of 11,679 participants aged 20 years and above were evaluated. The amount and type of food taken during a 24-h dietary recall were used to estimate dietary flavonol intake, which includes total flavonol, isorhamnetin, kaempferol, myricetin, and quercetin. Each analysis of the weighted data was dealt with in accordance with the NHANES reporting requirements' intricate stratification design. The Cox proportional risk regression model or Fine and Gray competing risks regression model were applied to evaluate all-cause and cause-specific mortality risks, respectively. The follow-up period was calculated using the time interval between the baseline and the death date or December 31, 2019 (whichever occurs first). Each data analysis was performed between October 1, 2023, and October 22, 2023. Dietary flavonol intake included total flavonol, isorhamnetin, kaempferol, myricetin, and quercetin. Up to December 31, 2019, National Death Index (NDI) mortality data were used to calculate mortality from all causes as well as cause-specific causes. A total of 11,679 individuals, which represents 44,189,487 U.S. non-hospitalized citizens, were included in the study; of these participants, 49.78% were male (n = 5816), 50.22% were female (n = 5, 863); 47.56% were Non-Hispanic White (n = 5554), 18.91% were Non-Hispanic Black (n = 2209), 16.23% were Mexican American (n = 1895), and 17.30% were other ethnicity (n = 2021); The mean [SE] age of the sample was 46.93 [0.36] years, with a median follow-up of 7.80 years (interquartile range, 7.55-8.07 years). After adjusting covariates, Cox proportional hazards models and fine and gray competing risks regression models for specific-cause mortality demonstrated that total flavonol intake was associated with all-cause (HR 0.64, 95% CI 0.54-0.75), cancer-specific (HR 0.45, 95% CI 0.28-0.70) and CVD-specific (HR 0.67, 95% CI 0.47-0.96) mortality risks; isorhamnetin intake was associated with all-cause (HR 0.72, 95% CI 0.60-0.86), and cancer-specific (HR 0.62, 95% CI 0.46-0.83) mortality risks; kaempferol intake was associated with all-cause (HR 0.74, 95% CI 0.63-0.86), and cancer-specific (HR 0.62, 95% CI 0.40-0.97) mortality risks; myricetin intake was associated with all-cause (HR 0.77, 95% CI 0.67-0.88), AD-specific (HR 0.34, 95% CI 0.14-0.85), and CVD-specific (HR 0.61, 95% CI 0.47-0.80) mortality risks; quercetin intake was associated with all-cause (HR 0.66, 95% CI 0.54-0.81), cancer-specific (HR 0.54, 95% CI 0.35-0.84), and CVD-specific (HR 0.61, 95% CI 0.40-0.93) mortality risks; there was no correlation observed between dietary flavonol intake and DM-specific mortality. According to the current study, all-cause, AD, cancer, and CVD mortality risks declined with increased dietary flavonoid intake in the U.S. adults. This finding may be related to the anti-tumor, anti-inflammatory, and anti-oxidative stress properties of flavonol.
Collapse
Affiliation(s)
- Zhiqiang Zong
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, China
| | - Xiang Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, China
| | - Yang Yang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, China
| | - Jianchao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.
| | - Fanfan Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, China.
| |
Collapse
|
9
|
Sethiya NK, Ghiloria N, Srivastav A, Bisht D, Chaudhary SK, Walia V, Alam MS. Therapeutic Potential of Myricetin in the Treatment of Neurological, Neuropsychiatric, and Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:865-882. [PMID: 37461364 DOI: 10.2174/1871527322666230718105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 06/12/2024]
Abstract
Myricetin (MC), 3,5,7,3',4',5'-hexahydroxyflavone, chemically belongs to a flavonoid category known to confer antioxidant, antimicrobial, antidiabetic, and neuroprotective effects. MC is known to suppress the generation of Reactive Oxygen Species (ROS), lipid peroxidation (MDA), and inflammatory markers. It has been reported to improve insulin function in the human brain and periphery. Besides this, it modulates several neurochemicals including glutamate, GABA, serotonin, etc. MC has been shown to reduce the expression of the enzyme Mono Amine Oxidase (MAO), which is responsible for the metabolism of monoamines. MC treatment reduces levels of plasma corticosterone and restores hippocampal BDNF (full form) protein in stressed animals. Further, MC has shown its protective effect against amyloid-beta, MPTP, rotenone, 6-OHDA, etc. suggesting its potential role against neurodegenerative disorders. The aim of the present review is to highlight the therapeutic potential of MC in the treatment of several neurological, neuropsychiatric, and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Neha Ghiloria
- Dr. Baba Saheb Ambedkar Hospital, Rohini, New Delhi 110085, India
| | | | - Dheeraj Bisht
- Department of Pharmaceutical Sciences, Sir J.C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital, Uttarakhand 263002, India
| | | | - Vaibhav Walia
- Department of Pharmacology, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| | - Md Sabir Alam
- Department of Pharmaceutics, SGT College of Pharmacy, SGT University, Gurugram, Haryana 122505, India
| |
Collapse
|
10
|
Monteiro KLC, de Aquino TM, da Silva-Júnior EF. Natural Compounds as Inhibitors of Aβ Peptide and Tau Aggregation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1234-1250. [PMID: 38018200 DOI: 10.2174/0118715273273539231114095300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023]
Abstract
Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | |
Collapse
|
11
|
Wang C, Ouyang S, Zhu X, Jiang Y, Lu Z, Gong P. Myricetin suppresses traumatic brain injury-induced inflammatory response via EGFR/AKT/STAT pathway. Sci Rep 2023; 13:22764. [PMID: 38123650 PMCID: PMC10733425 DOI: 10.1038/s41598-023-50144-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Traumatic brain injury (TBI) is a common disease in neurosurgery with a high fatality and disability rate which imposes a huge burden on society and patient's family. Inhibition of neuroinflammation caused by microglia activation is a reasonable strategy to promote neurological recovery after TBI. Myricetin is a natural flavonoid that has shown good therapeutic effects in a variety of neurological disease models, but its therapeutic effect on TBI is not clear. We demonstrated that intraperitoneal injection of appropriate doses of myricetin significantly improved recovery of neurological function after TBI in Sprague Dawley rats and inhibited excessive inflammatory responses around the lesion site. Myricetin dramatically reduced the expression of toxic microglia markers generated by TBI and LPS, according to the outcomes of in vivo and in vitro tests. In particular, the expression of inducible nitric oxide synthase, cyclooxygenase 2, and some pro-inflammatory cytokines was reduced, which protected learning and memory functions in TBI rats. Through network pharmacological analysis, we found that myricetin may inhibit microglia hyperactivation through the EGFR-AKT/STAT pathway. These findings imply that myricetin is a promising treatment option for the management of neuroinflammation following TBI.
Collapse
Affiliation(s)
- Chenxing Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Siguang Ouyang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xingjia Zhu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yi Jiang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhichao Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Peipei Gong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
12
|
Jerom JP, Madhukumar S, Nair RH, Narayanan SP. Anti-amyloid potential of some phytochemicals against Aβ-peptide and α-synuclein, tau, prion, and Huntingtin protein. Drug Discov Today 2023; 28:103802. [PMID: 37858630 DOI: 10.1016/j.drudis.2023.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Some molecules self-assemble to create complex structures through molecular self-assembly. Hydrogel preparation, tissue repair, and therapeutic drug delivery are a few applications of molecular self-assembly. However, the self-assembly of amino acids, peptides, and proteins forms amyloid fibrils, resulting in various disorders, most notably neurodegenerative ailments. Examples include the self-assembly of phenylalanine, which causes phenylketonuria; Aβ, which causes Alzheimer's disease; the tau protein, which causes both Alzheimer's and Parkinson's diseases; and α-synuclein, which causes Parkinson's illness. This review provides information related to phytochemicals of great significance that can prevent the formation of, or destabilize, amino acid, peptide, and protein self-assemblies.
Collapse
Affiliation(s)
| | - Sooryalekshmi Madhukumar
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Sunilkumar Puthenpurackal Narayanan
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| |
Collapse
|
13
|
Horvat A, Vlašić I, Štefulj J, Oršolić N, Jazvinšćak Jembrek M. Flavonols as a Potential Pharmacological Intervention for Alleviating Cognitive Decline in Diabetes: Evidence from Preclinical Studies. Life (Basel) 2023; 13:2291. [PMID: 38137892 PMCID: PMC10744738 DOI: 10.3390/life13122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes mellitus is a complex metabolic disease associated with reduced synaptic plasticity, atrophy of the hippocampus, and cognitive decline. Cognitive impairment results from several pathological mechanisms, including increased levels of advanced glycation end products (AGEs) and their receptors, prolonged oxidative stress and impaired activity of endogenous mechanisms of antioxidant defense, neuroinflammation driven by the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), decreased expression of brain-derived neurotrophic factor (BDNF), and disturbance of signaling pathways involved in neuronal survival and cognitive functioning. There is increasing evidence that dietary interventions can reduce the risk of various diabetic complications. In this context, flavonols, a highly abundant class of flavonoids in the human diet, are appreciated as a potential pharmacological intervention against cognitive decline in diabetes. In preclinical studies, flavonols have shown neuroprotective, antioxidative, anti-inflammatory, and memory-enhancing properties based on their ability to regulate glucose levels, attenuate oxidative stress and inflammation, promote the expression of neurotrophic factors, and regulate signaling pathways. The present review gives an overview of the molecular mechanisms involved in diabetes-induced cognitive dysfunctions and the results of preclinical studies showing that flavonols have the ability to alleviate cognitive impairment. Although the results from animal studies are promising, clinical and epidemiological studies are still needed to advance our knowledge on the potential of flavonols to improve cognitive decline in diabetic patients.
Collapse
Affiliation(s)
- Anđela Horvat
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ignacija Vlašić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Liu J, Li T, Zhong G, Pan Y, Gao M, Su S, Liang Y, Ma C, Liu Y, Wang Q, Shi Q. Exploring the therapeutic potential of natural compounds for Alzheimer's disease: Mechanisms of action and pharmacological properties. Biomed Pharmacother 2023; 166:115406. [PMID: 37659206 DOI: 10.1016/j.biopha.2023.115406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Alzheimer's Disease (AD) is a global public health priority characterized by high mortality rates in adults and an increasing prevalence in aging populations worldwide. Despite significant advancements in comprehending the pathogenesis of AD since its initial report in 1907, there remains a lack of effective curative or preventive measures for the disease. In recent years, natural compounds sourced from diverse origins have garnered considerable attention as potential therapeutic agents for AD, owing to their anti-inflammatory, antioxidant, and neuroprotective properties. This review aims to consolidate the therapeutic effects of natural compounds on AD, specifically targeting the reduction of β-amyloid (Aβ) overproduction, anti-apoptosis, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Notably, the identified compounds exhibiting these effects predominantly originate from plants. This review provides valuable insights into the potential of natural compounds as a reservoir of novel therapeutic agents for AD, thereby stimulating further research and contributing to the development of efficacious treatments for this devastating disease.
Collapse
Affiliation(s)
- Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qing Shi
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China.
| |
Collapse
|
15
|
Li W, Rang Y, Liu H, Liu C. Update on new trends and progress of natural active ingredients in the intervention of Alzheimer's disease, based on understanding of traditional Chinese and Western relevant theories: A review. Phytother Res 2023; 37:3744-3764. [PMID: 37380605 DOI: 10.1002/ptr.7908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurological disorders causing death in the elderly worldwide. As a neurodegenerative disease that is difficult to prevent and cure, the pathogenesis of AD is complex and there is no effective cure. A variety of natural products derived from plants have been reported to have promising anti-AD activities, including flavonoids, terpenes, phenolic acids and alkaloids, which can effectively relieve the symptoms of AD in a variety of ways. This paper mainly reviews the pharmacological activity and mechanisms of natural products against AD. Although the clinical efficacy of these plants still needs to be determined by further high-quality studies, it may also provide a basis for future researchers to study anti-AD in depth.
Collapse
Affiliation(s)
- Weiye Li
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| |
Collapse
|
16
|
Lomartire S, Gonçalves AMM. Marine Macroalgae Polyphenols as Potential Neuroprotective Antioxidants in Neurodegenerative Diseases. Mar Drugs 2023; 21:md21050261. [PMID: 37233455 DOI: 10.3390/md21050261] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Polyphenols are beneficial natural compounds with antioxidant properties that have recently gain a lot of interest for their potential therapeutic applications. Marine polyphenols derived from marine macroalgae have been discovered to possess interesting antioxidant properties; therefore, these compounds can be included in several areas of drug development. Authors have considered the use of polyphenol extracts from seaweeds as neuroprotective antioxidants in neurodegenerative diseases. Marine polyphenols may slow the progression and limit neuronal cell loss due to their antioxidant activity; therefore, the use of these natural compounds would improve the quality of life for patients affected with neurodegenerative diseases. Marine polyphenols have distinct characteristics and potential. Among seaweeds, brown algae are the main sources of polyphenols, and present the highest antioxidant activity in comparison to red algae and green algae. The present paper collects the most recent in vitro and in vivo evidence from investigations regarding polyphenols extracted from seaweeds that exhibit neuroprotective antioxidant activity. Throughout the review, oxidative stress in neurodegeneration and the mechanism of action of marine polyphenol antioxidant activity are discussed to evidence the potential of algal polyphenols for future use in drug development to delay cell loss in patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Jazvinšćak Jembrek M, Oršolić N, Karlović D, Peitl V. Flavonols in Action: Targeting Oxidative Stress and Neuroinflammation in Major Depressive Disorder. Int J Mol Sci 2023; 24:ijms24086888. [PMID: 37108052 PMCID: PMC10138550 DOI: 10.3390/ijms24086888] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Major depressive disorder is one of the most common mental illnesses that highly impairs quality of life. Pharmacological interventions are mainly focused on altered monoamine neurotransmission, which is considered the primary event underlying the disease's etiology. However, many other neuropathological mechanisms that contribute to the disease's progression and clinical symptoms have been identified. These include oxidative stress, neuroinflammation, hippocampal atrophy, reduced synaptic plasticity and neurogenesis, the depletion of neurotrophic factors, and the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. Current therapeutic options are often unsatisfactory and associated with adverse effects. This review highlights the most relevant findings concerning the role of flavonols, a ubiquitous class of flavonoids in the human diet, as potential antidepressant agents. In general, flavonols are considered to be both an effective and safe therapeutic option in the management of depression, which is largely based on their prominent antioxidative and anti-inflammatory effects. Moreover, preclinical studies have provided evidence that they are capable of restoring the neuroendocrine control of the HPA axis, promoting neurogenesis, and alleviating depressive-like behavior. Although these findings are promising, they are still far from being implemented in clinical practice. Hence, further studies are needed to more comprehensively evaluate the potential of flavonols with respect to the improvement of clinical signs of depression.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Liu P, Zhou Y, Shi J, Wang F, Yang X, Zheng X, Wang Y, He Y, Xie X, Pang X. Myricetin improves pathological changes in 3×Tg-AD mice by regulating the mitochondria-NLRP3 inflammasome-microglia channel by targeting P38 MAPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154801. [PMID: 37086707 DOI: 10.1016/j.phymed.2023.154801] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/09/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) represents the common neurodegenerative disease featured by the manifestations of cognitive impairment and memory loss. AD could be alleviated with medication and improving quality of life. Clinical treatment of AD is mainly aimed at improving the cognitive function of patients. Donepezil, memantine and galantamine are commonly used drug. But they could only relieve AD, not cure it. Therefore, new treatment strategies focusing on AD pathogenesis are of great significance and value. Myricetin (Myr) is a natural flavonoid extracted from Myrica rubra. And it shows different bioactivities, such as anti-inflammation, antioxidation as well as central nervous system (CNS) activities. Nonetheless, its associated mechanism in treating AD remains unknown. PURPOSE Here we focused on investigating Myr's effect on treating AD and exploring if its protection on the nervous system activity was associated with specifically inhibiting P38 MAPK signaling pathway while regulating mitochondria-NLRP3 inflammasome-microglia. STUDY DESIGN AND METHODS This work utilized triple transgenic mice (3 × Tg-AD) as AD models and Aβ25-35 was used to induce BV2 cells to build an in vitro AD model. Behavioristics, pathology and related inflammatory factors were examined. Molecular mechanisms are investigated by western-blot, immunofluorescence staining, CETSA, molecular docking, network pharmacology. RESULTS According to our findings, Myr could remarkably improve memory loss, spatial learning ability, Aβ plaque deposition, neuronal and synaptic damage in 3 × Tg-AD mice through specifically inhibiting P38 MAPK pathway activation while restraining microglial hyperactivation. Furthermore, Myr promoted the transformation of microglial phenotype, restored the mitochondrial fission-fusion balance, facilitated mitochondrial biogenesis, and restrained NLRP3 inflammasome activation and neuroinflammation. For the in-vitro experiments, P38 agonist dehydrocorydaline (DHC) was utilized to confirm the key regulatory role of P38 MAPK signaling pathway on the mitochondria-NLRP3 inflammasome-microglia channel. CONCLUSIONS Our results revealed the therapeutic efficacy of Myr in experimental AD, and implied that the associated mechanism is possibly associated with inhibiting tmitochondrial dysfunction, activating NLRP3 inflammasome, and neuroinflammation which was mediated by P38 MAPK pathway. Myr is the drug candidate in AD therapy via targeting P38 MAPK pathway.
Collapse
Affiliation(s)
- Pengfei Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yunfeng Zhou
- School of Pharmacy, Henan University, Kaifeng 475004, China; Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
| | - Junzhuo Shi
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Feng Wang
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xiaojia Yang
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xuhui Zheng
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yanran Wang
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yangyang He
- School of Pharmacy, Henan University, Kaifeng 475004, China; Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China.
| | - Xinmei Xie
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Xiaobin Pang
- School of Pharmacy, Henan University, Kaifeng 475004, China; Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China; Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng 475004, China.
| |
Collapse
|
19
|
Yildirim C, Yar Saglam AS, Guney S, Turan B, Ebegil M, Coskun Cevher S, Balabanli B. Investigation Covering the Effect of Boron plus Taurine Application on Protein Carbonyl and Advanced Oxidation Protein Products Levels in Experimental Alzheimer Model. Biol Trace Elem Res 2023; 201:1905-1912. [PMID: 35618890 DOI: 10.1007/s12011-022-03293-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/17/2022] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia that occurs in the brain. This is a chronic neurodegenerative disease which is valid in 60-70% of all dementia patients. Boron, regarded as a potential antioxidant, has the effect of reducing oxidative stress. Taurine, as one of the thiol-containing amino acids, exists at different concentrations in both the neurons and glial cells of the central nervous system. It plays an important role in the protective and adjuvant therapies as an antioxidant due to its characteristics of maintaining the oxidant-antioxidant balance of the body as well as cell integrity and increasing body resistance. Based on this information, our objective was to reveal the effect of boron alone, taurine alone plus co-administration of taurine and boron application on brain tissue protein carbonyls (PC) and serum advanced oxidation protein products (AOPP) levels in the experimental Alzheimer's model. For this purpose, 5 groups were formed in our study which consisted of 30 Wistar albino male rats. The rats were given a single dose of STZ stereotaxically. At the end of this period, the rats were decapitated, plus their brain tissues and blood were removed. Our findings suggested that taurine alone and co-administration of boron and taurine had a decreasing effect on AOPP and PC levels of the experimental Alzheimer model of the rats.
Collapse
Affiliation(s)
- Cigdem Yildirim
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey.
| | - Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - Sevin Guney
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Burak Turan
- Gendarmerie General Command, Bestepe, Ankara, Turkey
| | - Meral Ebegil
- Department of Statistics, Faculty of Science, Gazi University, Ankara, Turkey
| | - Sule Coskun Cevher
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Barbaros Balabanli
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| |
Collapse
|
20
|
Myricetin improves apoptosis after ischemic stroke via inhibiting MAPK-ERK pathway. Mol Biol Rep 2023; 50:2545-2557. [PMID: 36611117 DOI: 10.1007/s11033-022-08238-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Neuronal apoptosis is the main cause for the disabilities and deaths of patients suffered with stroke. Neuroprotectants are clinically used to reduce neuronal apoptosis in ischemic stroke. However, the current neuroprotectants have multiple limitations. Myricetin is beneficial for multiple neurodegenerative diseases, but the role of myricetin as a neuroprotective agent in ischemic stroke is still not fully understood. METHODS AND RESULTS Middle cerebral artery occlusion, Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and Western blots were used to explore the anti-apoptotic effects of myricetin in vivo. Flow cytometry, Western blots and Ca2+ staining were used to study the neuroprotective effects of myricetin in vitro. In this study, we first demonstrated that myricetin reduced neuronal apoptosis after ischemia in vivo and in vitro. And, among the factors of apoptosis after ischemic stroke, excitotoxicity, oxidative stress and inflammation-induced apoptosis can be alleviated by myricetin. Moreover, we further demonstrated that myricetin was able to improve neuronal intrinsic apoptosis by inhibiting the phosphorylation of extracellular signal-regulated kinase in the oxygen and glucose deprivation in vitro. CONCLUSIONS Summarily, our results support myricetin as a novel neuroprotectant for the prevention or treatment of ischemic stroke via MAPK-ERK signaling pathway.
Collapse
|
21
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Honey and Alzheimer's Disease-Current Understanding and Future Prospects. Antioxidants (Basel) 2023; 12:427. [PMID: 36829985 PMCID: PMC9952506 DOI: 10.3390/antiox12020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD), a leading cause of dementia, has been a global concern. AD is associated with the involvement of the central nervous system that causes the characteristic impaired memory, cognitive deficits, and behavioral abnormalities. These abnormalities caused by AD is known to be attributed by extracellular aggregates of amyloid beta plaques and intracellular neurofibrillary tangles. Additionally, genetic factors such as abnormality in the expression of APOE, APP, BACE1, PSEN-1, and PSEN-2 play a role in the disease. As the current treatment aims to treat the symptoms and to slow the disease progression, there has been a continuous search for new nutraceutical agent or medicine to help prevent and cure AD pathology. In this quest, honey has emerged as a powerful nootropic agent. Numerous studies have demonstrated that the high flavonoids and phenolic acids content in honey exerts its antioxidant, anti-inflammatory, and neuroprotective properties. This review summarizes the effect of main flavonoid compounds found in honey on the physiological functioning of the central nervous system, and the effect of honey intake on memory and cognition in various animal model. This review provides a new insight on the potential of honey to prevent AD pathology, as well as to ameliorate the damage in the developed AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
22
|
Ramezani M, Meymand AZ, Khodagholi F, Kamsorkh HM, Asadi E, Noori M, Rahimian K, Shahrbabaki AS, Talebi A, Parsaiyan H, Shiravand S, Darbandi N. A role for flavonoids in the prevention and/or treatment of cognitive dysfunction, learning, and memory deficits: a review of preclinical and clinical studies. Nutr Neurosci 2023; 26:156-172. [PMID: 35152858 DOI: 10.1080/1028415x.2022.2028058] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Natural food substances, due to high rates of antioxidants, antiviral and anti-inflammatory properties, have been proposed to have the potential for the prevention or treatment of cognitive deficits, learning and memory deficits and neuro inflammation. In particular, medicinal plants with rich amounts of beneficial components such as flavonoids are one of the most promising therapeutic candidates for the cognitive deficit and memory loss. Herein, we aimed to review the impact of medicinal plants with focus on flavonoids on cognitive dysfunction, learning and memory loss by considering their signaling pathways. METHODS We extracted 93 preclinical and clinical studies related to the effects of flavonoids on learning and memory and cognition from published papers between 2000 and 2021 in the MEDLINE/PubMed, Cochrane Library, SCOPUS, and Airiti Library databases. RESULTS In the preclinical studies, at least there seem to be two main neurological and biological processes in which flavonoids contribute to the improvement and/or prevention of learning, memory deficit and cognitive dysfunction: (1) Regulation of neurotransmission system and (2) Enhancement of neurogenesis, synaptic plasticity and neuronal survival. CONCLUSION Although useful effects of flavonoids on learning and memory in preclinical investigations have been approved, more clinical trials are required to find out whether flavonoids and/or other ingredients of plants have the potent to prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Matin Ramezani
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | | | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Noori
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Kimia Rahimian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Aisa Talebi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Parsaiyan
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Shiravand
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Darbandi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
23
|
Ikeji CN, Adedara IA, Farombi EO. Dietary myricetin assuages atrazine-mediated hypothalamic-pituitary-testicular axis dysfunction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15655-15670. [PMID: 36169847 DOI: 10.1007/s11356-022-23033-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATZ) exposure is associated with reproductive dysfunction in both animals and humans. Myricetin, a flavonoid compound, is well documented for its numerous pharmacological activities. However, the impact of myricetin on the atrazine-mediated dysfunctional hypothalamic-pituitary-testicular axis is not known. This study investigated the role of myricetin on the atrazine-induced alterations in the male reproductive axis in rats orally gavaged with ATZ alone (50 mg/kg) or co-treated with ATZ + myricetin (MYR) at 5, 10, and 20 mg/kg for 30 consecutive days. Myricetin assuaged ATZ-induced reductions in intra-testicular testosterone, serum follicle-stimulating hormone, luteinizing hormone, and testosterone, coupled with decreases in alkaline phosphatase, acid phosphatase, lactate dehydrogenase, and glucose-6-phosphate dehydrogenase activities. Also, MYR treatment improved epididymal sperm count and motility and decreased sperm defects in ATZ-treated rats. Testicular sperm number, daily sperm production, and sperm viability remained unchanged in all treatment groups. Administration of MYR abated ATZ-mediated depletion in antioxidant status, an increase in myeloperoxidase activity, nitric oxide, hydrogen peroxide, malondialdehyde levels, and reactive oxygen and nitrogen species, as well as the histological lesions in the hypothalamus, epididymis, and testes of treated animals. All in all, MYR mitigated atrazine-mediated functional changes in the reproductive axis via anti-inflammatory and antioxidant mechanisms in atrazine-exposed rats. Dietary intake of MYR could be a worthy chemoprotective approach against reproductive dysfunction related to ATZ exposure.
Collapse
Affiliation(s)
- Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
24
|
Tao S, Fan W, Liu J, Wang T, Zheng H, Qi G, Chen Y, Zhang H, Guo Z, Zhou F. NLRP3 Inflammasome: An Emerging Therapeutic Target for Alzheimer's Disease. J Alzheimers Dis 2023; 96:1383-1398. [PMID: 37980662 DOI: 10.3233/jad-230567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Alzheimer's disease (AD) is currently the most prevalent neurological disease, and no effective and practical treatments and therapies exist. The nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain- containing receptor 3 (NLRP3) inflammasome is vital in the human innate immune response. However, when the NLRP3 inflammasome is overactivated by persistent stimulation, several immune-related diseases, including AD, atherosclerosis, and obesity, result. This review will focus on the composition and activation mechanism of the NLRP3 inflammasome, the relevant mechanisms of involvement in the inflammatory response to AD, and AD treatment targeting NLRP3 inflammasome. This review aims to reveal the pathophysiological mechanism of AD from a new perspective and provide the possibility of more effective and novel strategies for preventing and treating AD.
Collapse
Affiliation(s)
- Shuqi Tao
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Wenyuan Fan
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| | - Tong Wang
- Department of Neurosurgery, Wei Fang People's Hospital, Weifang, Shandong Province, China
| | - Haoning Zheng
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Gaoxiu Qi
- Department of Pathology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong Province, China
| | - Yanchun Chen
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| | - Zhangyu Guo
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| | - Fenghua Zhou
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
25
|
Chen T, Hu Y, Lu L, Zhao Q, Tao X, Ding B, Chen S, Zhu J, Guo X, Lin Z. Myricetin attenuates hypoxic-ischemic brain damage in neonatal rats via NRF2 signaling pathway. Front Pharmacol 2023; 14:1134464. [PMID: 36969871 PMCID: PMC10031108 DOI: 10.3389/fphar.2023.1134464] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Hypoxic-ischemic encephalopathy (HIE) is a crucial cause of neonatal death and neurological sequelae, but currently there is no effective therapy drug for HIE. Both oxidative stress and apoptosis play critical roles in the pathological development of HIE. Myricetin, a naturally extracted flavonol compound, exerts remarkable effects against oxidative stress, apoptosis, and inflammation. However, the role and underlying molecular mechanism of myricetin on HIE remain unclear. Methods: In this study, we established the neonatal rats hypoxic-ischemic (HI) brain damage model in vivo and CoCl2 induced PC12 cell model in vitro to explore the neuroprotective effects of myricetin on HI injury, and illuminate the potential mechanism. Results: Our results showed that myricetin intervention could significantly reduce brain infarction volume, glia activation, apoptosis, and oxidative stress marker levels through activating NRF2 (Nuclear factor-E2-related factor 2) and increase the expressions of NRF2 downstream proteins NQO-1 and HO-1. In addition, the NRF2 inhibitor ML385 could significantly reverse the effects of myricetin. Conclusion: This study found that myricetin might alleviate oxidative stress and apoptosis through NRF2 signaling pathway to exert the protective role for HI injury, which suggested that myricetin might be a promising therapeutic agent for HIE.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianlei Zhao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingqing Ding
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| | - Xiaoling Guo
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| |
Collapse
|
26
|
Chmiel M, Stompor-Gorący M. The Spectrum of Pharmacological Actions of Syringetin and Its Natural Derivatives-A Summary Review. Nutrients 2022; 14:nu14235157. [PMID: 36501187 PMCID: PMC9739508 DOI: 10.3390/nu14235157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mono- and poly-O-methylated flavonols and their glycoside derivatives belong to the group of natural plant polyphenols with a wide spectrum of pharmacological activities. These compounds are known for their antioxidant, antimutagenic, hepatoprotective, antidiabetic, and antilipogenic properties. Additionally, they inhibit carcinogenesis and cancer development. Having in mind the multidirectional biological activity of methylated flavonols, we would like to support further study on their health-promoting activities; in this review we summarized the most recent reports on syringetin and some of its structural analogues: laricitrin, ayanin, and isorhamnetin. Natural sources and biological potential of these substances were described based on the latest research papers.
Collapse
|
27
|
Calderaro A, Patanè GT, Tellone E, Barreca D, Ficarra S, Misiti F, Laganà G. The Neuroprotective Potentiality of Flavonoids on Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232314835. [PMID: 36499159 PMCID: PMC9736131 DOI: 10.3390/ijms232314835] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease (AD), due to its spread, has become a global health priority, and is characterized by senile dementia and progressive disability. The main cause of AD and other neurodegenerations (Huntington, Parkinson, Amyotrophic Lateral Sclerosis) are aggregated protein accumulation and oxidative damage. Recent research on secondary metabolites of plants such as polyphenols demonstrated that they may slow the progression of AD. The flavonoids' mechanism of action in AD involved the inhibition of acetylcholinesterase, butyrylcholinesterase, Tau protein aggregation, β-secretase, oxidative stress, inflammation, and apoptosis through modulation of signaling pathways which are implicated in cognitive and neuroprotective functions, such as ERK, PI3-kinase/Akt, NFKB, MAPKs, and endogenous antioxidant enzymatic systems. This review focuses on flavonoids and their role in AD, in terms of therapeutic potentiality for human health, antioxidant potential, and specific AD molecular targets.
Collapse
Affiliation(s)
- Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.T.); (D.B.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.T.); (D.B.)
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, V. S. Angelo, Loc. Folcara, 3043 Cassino, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
28
|
A study from structural insight to the antiamyloidogenic and antioxidant activities of flavonoids: scaffold for future therapeutics of Alzheimer’s disease. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Sur B, Lee B. Myricetin prevents sleep deprivation-induced cognitive impairment and neuroinflammation in rat brain via regulation of brain-derived neurotropic factor. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:415-425. [PMID: 36302617 PMCID: PMC9614391 DOI: 10.4196/kjpp.2022.26.6.415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Memory formation in the hippocampus is formed and maintained by circadian clock genes during sleep. Sleep deprivation (SD) can lead to memory impairment and neuroinflammation, and there remains no effective pharmacological treatment for these effects. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. In this study, we investigated the effects of MYR on memory impairment, neuroinflammation, and neurotrophic factors in sleep-deprived rats. We analyzed SD-induced cognitive and spatial memory, as well as pro-inflammatory cytokine levels during SD. SD model rats were intraperitoneally injected with 10 and 20 mg/kg/day MYR for 14 days. MYR administration significantly ameliorated SD-induced cognitive and spatial memory deficits; it also attenuated the SD-induced inflammatory response associated with nuclear factor kappa B activation in the hippocampus. In addition, MYR enhanced the mRNA expression of brain-derived neurotropic factor (BDNF) in the hippocampus. Our results showed that MYR improved memory impairment by means of anti-inflammatory activity and appropriate regulation of BDNF expression. Our findings suggest that MYR is a potential functional ingredient that protects cognitive function from SD.
Collapse
Affiliation(s)
- Bongjun Sur
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea,Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea,Correspondence Bombi Lee, E-mail:
| |
Collapse
|
30
|
Assi AA, Abdelnabi S, Attaai A, Abd-Ellatief RB. Effect of ivabradine on cognitive functions of rats with scopolamine-induced dementia. Sci Rep 2022; 12:16970. [PMID: 36216854 PMCID: PMC9551060 DOI: 10.1038/s41598-022-20963-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease is among the challenging diseases to social and healthcare systems because no treatment has been achieved yet. Although the ambiguous pathological mechanism underlying this disorder, ion channel dysfunction is one of the recently accepted possible mechanism. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play important roles in cellular excitability and synaptic transmission. Ivabradine (Iva), an HCN blocker, is acting on HCN channels, and is clinically used for angina and arrhythmia. The current study aimed to investigate the therapeutic effects of Iva against scopolamine (Sco) induced dementia. To test our hypothesis, Sco and Iva injected rats were tested for behavioural changes, followed by ELISA and histopathological analysis of the hippocampus. Induced dementia was confirmed by behavioural tests, inflammatory cytokines and oxidative stress tests and histopathological signs of neurodegeneration, multifocal deposition of congo red stained amyloid beta plaques and the decreased optical density of HCN1 immunoreactivity. Iva ameliorated the scopolamine-induced dysfunction, the hippocampus restored its normal healthy neurons, the amyloid plaques disappeared and the optical density of HCN1 immunoreactivity increased in hippocampal cells. The results suggested that blockage of HCN1 channels might underly the Iva therapeutic effect. Therefore, Iva might have beneficial effects on neurological disorders linked to HCN channelopathies.
Collapse
Affiliation(s)
- Abdel-Azim Assi
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sara Abdelnabi
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abdelraheim Attaai
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Rasha B Abd-Ellatief
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
31
|
Gong F, Qu R, Li Y, Lv Y, Dai J. Astragalus Mongholicus: A review of its anti-fibrosis properties. Front Pharmacol 2022; 13:976561. [PMID: 36160396 PMCID: PMC9490009 DOI: 10.3389/fphar.2022.976561] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fibrosis-related diseases (FRD) include cerebral fibrosis, pulmonary fibrosis, cardiac fibrosis, liver fibrosis, renal fibrosis, peritoneal fibrosis, etc. The effects of fibrosis can be severe, resulting in organ dysfunction, functional decline, and even organ failure, which can cause serious health problems.Aim: Currently, there is no effective modern medicine for anti-fibrosis in the clinics; however, Chinese medicine has a certain beneficial effect on treating such diseases. Astragalus Mongholicus (AM) has rich medicinal value, and its anti-fibrosis effect has been recently investigated. In recent years, more and more experimental studies have been conducted on the intervention of astragaloside IV (AS-IV), astragalus polysaccharide (APS), astragalus flavone, cycloastragalus alcohol, astragalus water extract and other pharmacological components in fibrosis-related diseases, attracting the interest of researchers. We aim to provide ideas for future research by summarizing recent research advances of AM in treating fibrosis-related diseases.Methods: A literature search was conducted from the core collections of electronic databases such as Baidu Literature, Sciencen.com, Google Scholar, PubMed, and Science Direct using the above keywords and the pharmacological and phytochemical details of the plant.Results: AM can be used to intervene in fibrosis-disease progression by regulating inflammation, oxidative stress, the immune system, and metabolism.Conclusion: AS-IV, APS, and astragalus flavone were studied and discussed in detail. These components have high potential anti-fibrosis activity. Overall, this review aims to gain insight into the AM’s role in treating fibro-related diseases.
Collapse
Affiliation(s)
- Fengying Gong
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongchun Li
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ying Lv
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| |
Collapse
|
32
|
Myricetin Inhibited Fear and Anxiety-Like Behaviors by HPA Axis Regulation and Activation of the BDNF-ERK Signaling Pathway in Posttraumatic Stress Disorder Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8320256. [PMID: 35722162 PMCID: PMC9200513 DOI: 10.1155/2022/8320256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a stress-related psychiatric or mental disorder characterized by experiencing a traumatic stress. The cause of such PTSD is dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and imbalance of monoamines. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. We investigated the effects of MYR on fear, depression, and anxiety following monoamine imbalance and hyperactivation of HPA axis in rats exposed to a single prolonged stress (SPS). Male rats were dosed with MYR (10 and 20 mg/kg, i.p.) once daily for 14 days after exposure to SPS. Administration of MYR reduced freezing responses to extinction recall, depression, and anxiety-like behaviors and decreased increase of plasma corticosterone and adrenocorticotropic hormone levels. Also, administration of MYR restored decreased serotonin and increased norepinephrine in the fear circuit regions, medial prefrontal cortex, and hippocampus. It also increased the reduction in the brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B mRNA expression and the ratio of p-ERK/extracellular signal-regulated kinase (ERK) in the hippocampus. Thus, MYR exerted antidepressant and anxiolytic effects by regulation of HPA axis and activation of the BDNF-ERK signaling pathway. Finally, we suggest that MYR could be a useful therapeutic agent to prevent traumatic stress such as PTSD.
Collapse
|
33
|
Iftikhar A, Nausheen R, Muzaffar H, Naeem MA, Farooq M, Khurshid M, Almatroudi A, Alrumaihi F, Allemailem KS, Anwar H. Potential Therapeutic Benefits of Honey in Neurological Disorders: The Role of Polyphenols. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103297. [PMID: 35630774 PMCID: PMC9143627 DOI: 10.3390/molecules27103297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
Honey is the principal premier product of beekeeping familiar to Homo for centuries. In every geological era and culture, evidence can be traced to the potential usefulness of honey in several ailments. With the advent of recent scientific approaches, honey has been proclaimed as a potent complementary and alternative medicine for the management and treatment of several maladies including various neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, etc. In the literature archive, oxidative stress and the deprivation of antioxidants are believed to be the paramount cause of many of these neuropathies. Since different types of honey are abundant with certain antioxidants, primarily in the form of diverse polyphenols, honey is undoubtedly a strong pharmaceutic candidate against multiple neurological diseases. In this review, we have indexed and comprehended the involved mechanisms of various constituent polyphenols including different phenolic acids, flavonoids, and other phytochemicals that manifest multiple antioxidant effects in various neurological disorders. All these mechanistic interpretations of the nutritious components of honey explain and justify the potential recommendation of sweet nectar in ameliorating the burden of neurological disorders that have significantly increased across the world in the last few decades.
Collapse
Affiliation(s)
- Arslan Iftikhar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Rimsha Nausheen
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Humaira Muzaffar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Muhammad Ahsan Naeem
- Department of Basic Sciences, KBCMA College of Veterinary and Animal Sciences, Narowal 51600, Pakistan;
| | - Muhammad Farooq
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Pakistan;
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
- Correspondence: (H.A.); (K.S.A.)
| | - Haseeb Anwar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
- Correspondence: (H.A.); (K.S.A.)
| |
Collapse
|
34
|
Akinluyi E, Aderibigbe A, Adeoluwa O, Adebesin A, Adeoluwa G. Ameliorating Effect of Morin Hydrate on Chronic Restraint Stress-induced Biochemical Disruption, Neuronal, and Behavioral Dysfunctions in BALB/c Mice. Basic Clin Neurosci 2022; 13:393-406. [PMID: 36457885 PMCID: PMC9706294 DOI: 10.32598/bcn.2022.1059.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2020] [Accepted: 11/01/2022] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Morin hydrate (MH) is a bioflavonoid component of many fruits and vegetables. Our previous research demonstrated that MH provides neuroprotection in mouse models of acute restraint stress and sleep deprivation by attenuating hippocampal neuronal damage and enhancing memory. Based on these findings, our study investigated the role of MH in chronic stress-induced neuronal and biochemical perturbations in BALB/c mice. METHODS Male BALB/c mice were divided into 6 groups (n=6). Groups 1 and 2 received vehicle (10 mL/kg normal saline), groups 3-5 received MH (5, 10, 20 mg/kg IP), while group 6 received ginseng (25 mg/kg) daily and 30 minutes afterward were restrained in a plastic cylindrical restrainer for 14 days. RESULTS Immobility time in the forced swim test increased in the MH-treated group, indicating an antidepressant-like effect. Also, a reduction in frequency and duration of open arms exploration was observed in the elevated plus-maze (EPM) test in stressed mice, and administration of MH (5, 10, 20 mg/kg, IP) reversed these effects. An increase in blood levels of glucose, triglycerides, total cholesterol, and brain malondialdehyde and nitrite levels was observed in the stressed groups, which was reversed by MH. Furthermore, MH reversed the stress-induced reduction in HDL cholesterol and glutathione (GSH) levels and attenuated stress-induced alterations in the prefrontal cortex and hippocampus. CONCLUSION Our findings suggest that MH attenuated chronic restraint stress-behavioral and biochemical perturbations, probably due to its capability to decrease oxidative stress and brain neuronal damage. HIGHLIGHTS Chronic stress perturbs physiological and psychological homeostasis;Morin hydrate normalized chronic stress-induced biochemical disruptions;Morin hydrate attenuated structural changes in prefrontal cortex and hippocampus. PLAIN LANGUAGE SUMMARY Stress is a state of being overwhelmed by demands exceeding the personal and social means of coping. Exposure to excessive stress has resulted in disruption of neurochemical and physiological processes, which sometimes manifest as behavioural abnormalities. Therefore to cope with the stressful life style, there is need to develop a therapeutic agent of plant origin. Morin hydrate is a flavonoid with known antioxidant and neuroprotective properties; however, its effect in a stressful condition has not been studies. The study thus evaluated ameliorating effect of Morin hydrate on chronic restraint stress-induced biochemical disruption, neuronal and behavioral dysfunctions in BALB/c mice. To achieve this, mice were exposed to chronic restraint stress protocol for fourteen days. Behavioural changes were examined using various techniques. The vital parameters like antioxidant, glucose and nitrite levels were also taken. Our findings show that Morin hydrate prevented behavioral abnormalities and damage to the brain cells. It also inhibited stress-induced biochemical disturbance.
Collapse
Affiliation(s)
- Elizabeth Akinluyi
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Adegbuyi Aderibigbe
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusegun Adeoluwa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Adaeze Adebesin
- Department of Pharmacology and Therapeutics, College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Ogun State, Nigeria
| | - Gladys Adeoluwa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
35
|
Arab Z, Hosseini M, Marefati N, Beheshti F, Anaeigoudari A, Sadeghnia HR, Boskabady MH. Neuroprotective and memory enhancing effects of Zataria multiflora in lipopolysaccharide-treated rats. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:101-110. [PMID: 35601788 PMCID: PMC9094587 DOI: 10.30466/vrf.2020.117553.2786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/28/2020] [Indexed: 11/27/2022]
Abstract
The study was aimed to evaluate the effects of hydro-ethanol extract Zataria multiflora on the brain tissue oxidative damage, and hippocampal interleukin-6 (IL-6) as well as learning and memory capacity in lipopolysaccharide (LPS) - challenged rats. The rats were randomized into five groups as follow: Control group: Rats were treated with saline, LPS group: Rats were treated with LPS 1.00 mg kg-1, ZM50, ZM100 and ZM200 groups in which the rats were treated with Z. multiflora extract (50.00, 100 or 200 mg kg-1 per day, respectively). The treatments including extract or vehicle were administered intraperitoneally and given three days before the behavioral tests and were continued within a6-day behavioral experiment. Injection of LPS was daily done before the behavioral tests. Finally, the brains were collected for biochemical evaluations. Although LPS administration prolonged the latency in Morris water maze and shortened the latency to enter the dark chamber in passive avoidance test, ZM extract restored these changes to approach control group values. Also, LPS increased IL-6, malondialdehyde (MDA) and nitric oxide (NO) metabolites levels and lowered thiol, superoxide dismutase (SOD) and catalase (CAT) levels in the brain, however, Z. multiflora extract reduced IL-6, MDA and NO metabolites concentrations, but increased thiol content, SOD, and CAT levels. The results of this study showed that Z. multiflora ameliorated learning and memory dysfunction in LPS - challenged rats by alleviating of inflammatory responses and brain tissue oxidative damage.
Collapse
Affiliation(s)
- Zohreh Arab
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran;
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran;
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran;
| | - Akbar Anaeigoudari
- Department of Physiology,School of Medicine, Jiroft University of Medical Sciences, Jiroft,Iran;
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran;
| | | |
Collapse
|
36
|
Halder T, Patel B, Acharya N. Design and optimization of myricetin encapsulated nanostructured lipid carriers: In-vivo assessment against cognitive impairment in amyloid beta (1–42) intoxicated rats. Life Sci 2022; 297:120479. [DOI: 10.1016/j.lfs.2022.120479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
|
37
|
Akefe IO, Adegoke VA, Lamidi IY, Ameh MP, Idoga ES, Ubah SA, Ajayi IE. Myrtenal mitigates streptozotocin-induced spatial memory deficit via improving oxido inflammatory, cholinergic and neurotransmitter functions in mice. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100106. [PMID: 35570857 PMCID: PMC9095925 DOI: 10.1016/j.crphar.2022.100106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of chronic neurodegenerative disorders is on the rise, but with no effective treatment due to the paucity of information on the pathological mechanism underlying these disorders. Thus, this study investigated the role of oral administration of myrtenal in mitigating memory deficits and neuro-biochemical alterations in streptozotocin-demented mice model. Mice (n = 35) were randomly allocated into five cohorts consisting of 7 mice each; Group I: Control mice received vehicle alone; Group II: streptozotocin; Group III: streptozotocin + 100 mg/kg myrtenal; Group IV: streptozotocin +200 mg/kg myrtenal; and Group V: streptozotocin + donepezil 0.5 mg/kg. Data from this study demonstrated that the administration of streptozotocin (STZ) impaired spatial memory and induced alterations in markers of oxido-inflammatory response, cholinergic function, cytoarchitecture, and neurotransmitter levels in mice hippocampus. Notably, administration of myrtenal enhanced spatial memory performance in STZ-demented mice by improving the activities of endogenous antioxidant enzymes to protect the brain from oxido-inflammatory stress. Treatment with myrtenal also restored cholinergic function and stabilized the homeostasis of neurotransmitters in STZ-demented mice. The authors infer that fruits rich in myrtenal may be beneficial for treating patients living with dementia associated with Alzheimer's disease. Data from the present study demonstrates that the administration of streptozotocin impairs spatial memory in mice and induces alterations in markers of oxido-inflammatory response, cholinergic function, histoarchitecture, and neurotransmitter levels in the hippocampus. The administration of myrtenal enhances spatial memory performance in streptozotocin-demented mice by improving the activities of endogenous antioxidant enzymes to protect the brain from oxido-inflammatory stress. Treatment with myrtenal restores cholinergic function and stabilizes the homeostasis of neurotransmitters in streptozotocin-demented mice.
Collapse
|
38
|
Ma J, Liu J, Chen Y, Yu H, Xiang L. Myricetin Improves Impaired Nerve Functions in Experimental Diabetic Rats. Front Endocrinol (Lausanne) 2022; 13:915603. [PMID: 35928887 PMCID: PMC9343592 DOI: 10.3389/fendo.2022.915603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is considered as one of the most important complications of diabetes mellitus. At present, effective treatments that might improve the damaged neurological function in DPN are sorely needed. As myricetin has been proved to possess excellent neuroprotective and antioxidant effects, it might have therapeutic potential for DPN. Therefore, the purpose of our study was to detect the potential beneficial effect of myricetin on DPN. A single dose of 50 mg/kg of streptozotocin was applied in rats for the establishment of diabetic models. Different doses of myricetin (0.5 mg/kg/day, 1.0 mg/kg/day, and 2.0 mg/kg/day) were intraperitoneally injected for 2 weeks from the 21st day after streptozotocin injection. After the final myricetin injection, behavioral, electrophysiological, biochemical, and protein analyses were performed. In the present study, myricetin significantly ameliorated diabetes-induced impairment in sensation, nerve conduction velocities, and nerve blood flow. In addition, myricetin significantly reduced the generation of advanced glycation end-products (AGEs) and reactive oxygen species (ROS), and elevated Na+, K+-ATPase activity and antioxidant activities in nerves in diabetic animals. Additional studies revealed that myricetin significantly raised the hydrogen sulfide (H2S) levels, and elevated the expression level of heme oxygenase-1 (HO-1) as well as nuclear factor-E2-related factor-2 (Nrf2) in diabetic rats. In addition, myricetin has the capability of decreasing plasma glucose under diabetic conditions. The findings in our present study collectively indicated that myricetin could restore the impaired motor and sensory functions under diabetic conditions. The Nrf2-dependent antioxidant action and the capability of decreasing plasma glucose might be the underlying mechanisms for the beneficial effect of myricetin on impaired neural functions. Our study showed the therapeutic potential of myricetin in the management of DPN.
Collapse
Affiliation(s)
| | | | | | - Hailong Yu
- *Correspondence: Hailong Yu, ; Liangbi Xiang,
| | | |
Collapse
|
39
|
Li J, Xiang H, Huang C, Lu J. Pharmacological Actions of Myricetin in the Nervous System: A Comprehensive Review of Preclinical Studies in Animals and Cell Models. Front Pharmacol 2021; 12:797298. [PMID: 34975495 PMCID: PMC8716845 DOI: 10.3389/fphar.2021.797298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/01/2022] Open
Abstract
Myricetin is a natural flavonoid extracted from a variety of plants, such as medicinal herbs, vegetables, berries, and tea leaves. A growing body of evidence has reported that myricetin supplementation display therapeutic activities in a lot of nervous system disorders, such as cerebral ischemia, Alzheimer’s disease, Parkinson’s disease, epilepsy, and glioblastoma. Myricetin supplementation can also protect against pathological changes and behavioral impairment induced by multiple sclerosis and chronic stress. On the basis of these pharmacological actions, myricetin could be developed as a potential drug for the prevention and/or treatment of nervous system disorders. Mechanistic studies have shown that inhibition of oxidative stress, cellular apoptosis, and neuroinflammatory response are common mechanisms for the neuroprotective actions of myricetin. Other mechanisms, including the activation of the nuclear factor E2-related factor 2 (Nrf2), extracellular signal-regulated kinase 1/2 (ERK1/2), protein kinase B (Akt), cyclic adenosine monophosphate-response element binding protein (CREB), and brain-derived neurotrophic factor (BDNF) signaling, inhibition of intracellular Ca2+ increase, inhibition of c-Jun N-terminal kinase (JNK)-p38 activation, and suppression of mutant protein aggregation, may also mediate the neuroprotective effects of myricetin. Furthermore, myricetin treatment has been shown to promote the activation of the inhibitory neurons in the hypothalamic paraventricular nucleus, which subsequently produces anti-epilepsy effects. In this review, we make a comprehensive understanding about the pharmacological effects of myricetin in the nervous system, aiming to push the development of myricetin as a novel drug for the treatment of nervous system disorders.
Collapse
Affiliation(s)
- Jie Li
- Department of Gastroenterology, The People’s Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
| | - Haitao Xiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Jiashu Lu
- Department of Pharmacy, The People’s Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, Taizho, China
- *Correspondence: Jiashu Lu,
| |
Collapse
|
40
|
Anti-Oxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Flavonols: Targeting Nrf2, NF-κB and p53 Pathways in Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10101628. [PMID: 34679762 PMCID: PMC8533072 DOI: 10.3390/antiox10101628] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are one of the leading causes of disability and death worldwide. Intracellular transduction pathways that end in the activation of specific transcription factors are highly implicated in the onset and progression of pathological changes related to neurodegeneration, of which those related to oxidative stress (OS) and neuroinflammation are particularly important. Here, we provide a brief overview of the key concepts related to OS- and neuroinflammation-mediated neuropathological changes in neurodegeneration, together with the role of transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB). This review is focused on the transcription factor p53 that coordinates the cellular response to diverse genotoxic stimuli, determining neuronal death or survival. As current pharmacological options in the treatment of neurodegenerative disease are only symptomatic, many research efforts are aimed at uncovering efficient disease-modifying agents. Natural polyphenolic compounds demonstrate powerful anti-oxidative, anti-inflammatory and anti-apoptotic effects, partially acting as modulators of signaling pathways. Herein, we review the current understanding of the therapeutic potential and limitations of flavonols in neuroprotection, with emphasis on their anti-oxidative, anti-inflammatory and anti-apoptotic effects along the Nrf2, NF-κB and p53 pathways. A better understanding of cellular and molecular mechanisms of their action may pave the way toward new treatments.
Collapse
|
41
|
Xu H, Zhou Q, Liu B, Cheng KW, Chen F, Wang M. Neuroprotective Potential of Mung Bean ( Vigna radiata L.) Polyphenols in Alzheimer's Disease: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11554-11571. [PMID: 34551518 DOI: 10.1021/acs.jafc.1c04049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mung bean contains various neuroprotective polyphenols, so it might be a healthy food for Alzheimer's disease (AD) prevention. Totally, 19 major phenolic compounds were quantified in mung bean, including 10 phenolic acids and 9 flavonoids. After summarizing their contents and effective doses in rodent AD models, it was speculated that vitexin, isovitexin, sinapic acid, and ferulic acid might be the major bioactive compounds for mung bean-mediated neuroprotection. The mechanisms involved inhibition of β-amyloidogenesis, tau hyperphosphorylation, oxidative stress, and neuroinflammation, and promotion of autophagy and acetylcholinesterase enzyme activity. Notably, the neuroprotective phenolic profile in mung bean changed after germination, with decreased vitexin and isovitexin, and increased rutin, isoquercitrin, isorhamnetin, and caffeic acid detected. However, only studies of individual phenolic compounds in mung bean are published at present. Hence, further studies are needed to elucidate the neuroprotective activities and mechanisms of extractions of mung bean seeds and sprouts, and the synergism between different phenolic compounds.
Collapse
Affiliation(s)
- Hui Xu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
42
|
Kamel EM, Ahmed NA, El-Bassuony AA, Hussein OE, Alrashdi B, Ahmed SA, Lamsabhi AM, Mahmoud AM, Arab HH. Xanthine oxidase inhibitory activity of Euphorbia peplus L. phenolics. Comb Chem High Throughput Screen 2021; 25:1336-1344. [PMID: 34151757 DOI: 10.2174/1386207324666210609104456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/05/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Various phenolics show inhibitory activity towards xanthine oxidase (XO), an enzyme that generates reactive oxygen species which cause oxidative damage. OBJECTIVE This study investigated the XO inhibitory activity of Euphorbia peplus phenolics. METHODS The dried powdered aerial parts of E. peplus were extracted, fractioned and phenolics were isolated and identified. The XO inhibitory activity of E. peplus extract (EPE) and the isolated phenolics was investigated in vitro and in vivo. RESULTS Three phenolics were isolated from the ethyl acetate fraction of E. peplus. All isolated compounds and the EPE showed inhibitory activity towards XO in vitro. In hyperuricemic rats, EPE and the isolated phenolics decreased uric acid and XO activity. Molecular docking showed the binding modes of isolated phenolics with XO, depicting significant interactions with the active site amino acid residues. Molecular dynamics simulation trajectories confirmed the interaction of isolated phenolics with XO by forming hydrogen bonds with the active site residues. Also, the root mean square (RMS) deviations of XO and phenolics-XO complexes achieved equilibrium and fluctuated during the 10 ns MD simulations. The radius of gyration and solvent accessible surface area investigations showed that different systems were stabilized at ≈ 2500 ps. The RMS fluctuations profile depicted that the drug binding site exhibited a rigidity behavior during the simulation. CONCLUSION In vitro, in vivo and computational investigations showed the XO inhibitory activity of E. peplus phenolics. These phenolics might represent promising candidates for the development of XO inhibitors.
Collapse
Affiliation(s)
- Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Noha A Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ashraf A El-Bassuony
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Omnia E Hussein
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Barakat Alrashdi
- Biology Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Sayed A Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, Madrid 28049, Spain
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
43
|
Singh AK, Rai SN, Maurya A, Mishra G, Awasthi R, Shakya A, Chellappan DK, Dua K, Vamanu E, Chaudhary SK, Singh MP. Therapeutic Potential of Phytoconstituents in Management of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5578574. [PMID: 34211570 PMCID: PMC8208882 DOI: 10.1155/2021/5578574] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
Since primitive times, herbs have been extensively used in conventional remedies for boosting cognitive impairment and age-associated memory loss. It is mentioned that medicinal plants have a variety of dynamic components, and they have become a prominent choice for synthetic medications for the care of cognitive and associated disorders. Herbal remedies have played a major role in the progression of medicine, and many advanced drugs have already been developed. Many studies have endorsed practicing herbal remedies with phytoconstituents, for healing Alzheimer's disease (AD). All the information in this article was collated from selected research papers from online scientific databases, such as PubMed, Web of Science, and Scopus. The aim of this article is to convey the potential of herbal remedies for the prospect management of Alzheimer's and related diseases. Herbal remedies may be useful in the discovery and advancement of drugs, thus extending new leads for neurodegenerative diseases such as AD. Nanocarriers play a significant role in delivering herbal medicaments to a specific target. Therefore, many drugs have been described for the management of age-linked complaints such as dementia, AD, and the like. Several phytochemicals are capable of managing AD, but their therapeutic claims are restricted due to their lower solubility and metabolism. These limitations of natural therapeutics can be overcome by using a targeted nanocarrier system. This article will provide the primitive remedies as well as the development of herbal remedies for AD management.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Anand Maurya
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, Uttar Pradesh, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Assam 786004, Dibrugarh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, New South Wales, Australia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464, Bucharest, Romania
| | - Sushil Kumar Chaudhary
- Faculty of Pharmacy, DIT University, Mussoorie-Diversion Road, Makkawala, Dehradun 248 009, Uttarakhand, India
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
44
|
Kim JK, Park SU. Flavonoids for treatment of Alzheimer's disease: An up to date review. EXCLI JOURNAL 2021; 20:495-502. [PMID: 33883978 PMCID: PMC8056054 DOI: 10.17179/excli2021-3492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science and Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
45
|
Varshney H, Siddique YH. Role of natural plant products against Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:904-941. [PMID: 33881973 DOI: 10.2174/1871527320666210420135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative disorder. Deposition of amyloid fibrils and tau protein are associated with various pathological symptoms. Currently limited medication is available for AD treatment. Most of the drugs are basically cholinesterase inhibitors and associated with various side effects. Natural plant products have shown potential as a therapeutic agent for the treatment of AD symptoms. Variety of secondary metabolites like flavonoids, tannins, terpenoids, alkaloids and phenols are used to reduce the progression of the disease. Plant products have less or no side effect and are easily available. The present review gives a detailed account of the potential of natural plant products against the AD symptoms.
Collapse
Affiliation(s)
- Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
46
|
Tahir MS, Almezgagi M, Zhang Y, Bashir A, Abdullah HM, Gamah M, Wang X, Zhu Q, Shen X, Ma Q, Ali M, Solangi ZA, Malik WS, Zhang W. Mechanistic new insights of flavonols on neurodegenerative diseases. Biomed Pharmacother 2021; 137:111253. [PMID: 33545661 DOI: 10.1016/j.biopha.2021.111253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023] Open
Abstract
With a large and increasing elderly population, neurodegenerative diseases such as Parkinson's disease (PD), Huntington disease (HD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and Multiple sclerosis (MS) have become a major and growing health problem. During the past few decades, the elderly population has grown 2.5 % every year. Unfortunately, there are no specific therapeutic remedies available to slow the onset or development of these diseases. An aging brain causes many pathophysiological changes and is the major risk factor for most of the neurodegenerative disorders. Polyphenolic compounds such as flavonols have shown therapeutic potential and can contribute to the treatment of these diseases. In this review, evidence for the beneficial neuroprotective effect of multiple flavonols is discussed and their multifactorial cellular pathways for the progressions of age-associated brain changes are identified. Moreover, the animal models of these diseases support the neuroprotective effect and target the potential of flavonols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Shoaib Tahir
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China; Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Maged Almezgagi
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China; Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Yu Zhang
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Adnan Bashir
- Department of Pharmacology, Fatima Memorial College of Medicine and Dentistry, Punjab Lahore, 54000, Pakistan
| | - Hasnat Mazhar Abdullah
- Department of Emergency Medicine, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, MK6 5BY, United Kingdom
| | - Mohammed Gamah
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Xiaozhou Wang
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China
| | - Qinfang Zhu
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China
| | - Xiangqun Shen
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Qianqian Ma
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Muhammad Ali
- Department of Hepatobiliary Surgery, Qinghai University Affiliated Hospital, Qinghai, Xining, 810001, China
| | - Zeeshan Ahmed Solangi
- Department of Crop Genetics and Breeding, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Waseem Sami Malik
- Department of Hepatobiliary Surgery, Qinghai University Affiliated Hospital, Qinghai, Xining, 810001, China
| | - Wei Zhang
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China; Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China.
| |
Collapse
|
47
|
Moradi SZ, Jalili F, Farhadian N, Joshi T, Wang M, Zou L, Cao H, Farzaei MH, Xiao J. Polyphenols and neurodegenerative diseases: focus on neuronal regeneration. Crit Rev Food Sci Nutr 2021; 62:3421-3436. [PMID: 33393375 DOI: 10.1080/10408398.2020.1865870] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases are questions that modern therapeutics can still not answer. Great milestones have been achieved regarding liver, heart, skin, kidney and other types of organ transplantations but the greatest drawback is the adequate supply of these organs. Furthermore, there are still a few options available in the treatment of neurodegenerative diseases. With great advances in medical science, many health problems faced by humans have been solved, and their quality of life is improving. Moreover, diseases that were incurable in the past have now been fully cured. Still, the area of regenerative medicine, especially concerning neuronal regeneration, is in its infancy. Presently allopathic drugs, surgical procedures, organ transplantation, stem cell therapy forms the core of regenerative therapy. However, many times, the currently used therapies cannot completely cure damaged organs and neurodegenerative diseases. The current review focuses on the concepts of regeneration, hurdles faced in the path of regenerative therapy, neurodegenerative diseases and the idea of using peptides, cytokines, tissue engineering, genetic engineering, advanced stem cell therapy, and polyphenolic phytochemicals to cure damaged tissues and neurodegenerative diseases.
Collapse
Affiliation(s)
- Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faramarz Jalili
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Kumaun University (Nainital), Nainital, India
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
48
|
Flores-Cuadra JA, Madrid A, Fernández PL, Pérez-Lao AR, Oviedo DC, Britton GB, Carreira MB. Critical Review of the Alzheimer's Disease Non-Transgenic Models: Can They Contribute to Disease Treatment? J Alzheimers Dis 2020; 82:S227-S250. [PMID: 33216029 DOI: 10.3233/jad-200870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a growing neurodegenerative disease without effective treatments or therapies. Despite the use of different approaches and an extensive variety of genetic amyloid based models, therapeutic strategies remain elusive. AD is characterized by three main pathological hallmarks that include amyloid-β plaques, neurofibrillary tangles, and neuroinflammatory processes; however, many other pathological mechanisms have been described in the literature. Nonetheless, the study of the disease and the screening of potential therapies is heavily weighted toward the study of amyloid-β transgenic models. Non-transgenic models may aid in the study of complex pathological states and provide a suitable complementary alternative to evaluating therapeutic biomedical and intervention strategies. In this review, we evaluate the literature on non-transgenic alternatives, focusing on the use of these models for testing therapeutic strategies, and assess their contribution to understanding AD. This review aims to underscore the need for a shift in preclinical research on intervention strategies for AD from amyloid-based to alternative, complementary non-amyloid approaches.
Collapse
Affiliation(s)
- Julio A Flores-Cuadra
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Alanna Madrid
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Patricia L Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Ambar R Pérez-Lao
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Diana C Oviedo
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá.,Escuela de Psicología, Facultad de Ciencias Sociales, Universidad Católica Santa María La Antigua (USMA), Panamá
| | - Gabrielle B Britton
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Maria B Carreira
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| |
Collapse
|
49
|
Gupta G, Siddiqui MA, Khan MM, Ajmal M, Ahsan R, Rahaman MA, Ahmad MA, Arshad M, Khushtar M. Current Pharmacological Trends on Myricetin. Drug Res (Stuttg) 2020; 70:448-454. [DOI: 10.1055/a-1224-3625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractMyricetin is a member of the group of flavonoids called flavonols. Myricetin is obtained from various fruit, vegetables, tea, berries and red wine. Myricetin is characterized by the pysrogallol B-ring, and the more hydroxylated structure is known to be capable for its increased biological properties compared with other flavonols. Myricetin is produced by the Myricaceae, Anacardiaceae, Polygonaceae, Pinaceae and Primulacea families. It is soluble in organic solvent such as ethanol, DMSO (dimethyl sulfoxide), and dimethyl formamide (DMF). It is sparingly soluble in aqueous buffers. Myricetin shows its various pharmacological activities including antioxidant, anti-amyloidogenic, antibacterial, antiviral, antidiabetic, anticancer, anti-inflammatory, anti-epileptic and anti-ulcer. This review article focuses on pharmacological effects of Myricetin on different diseases such as osteoporotic disorder, anti-inflammatory disorder, alzheimer’s disease, anti-epileptic, cancer, cardiac disorder, diabetic metabolic disorder, hepatoprotective disorder and gastro protective disorder.
Collapse
Affiliation(s)
- Gudiya Gupta
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohd Aftab Siddiqui
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohd Muazzam Khan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohd Ajmal
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Rabiya Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Md Azizur Rahaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Md Afroz Ahmad
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Md Arshad
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohammad Khushtar
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
50
|
Taheri Y, Suleria HAR, Martins N, Sytar O, Beyatli A, Yeskaliyeva B, Seitimova G, Salehi B, Semwal P, Painuli S, Kumar A, Azzini E, Martorell M, Setzer WN, Maroyi A, Sharifi-Rad J. Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complement Med Ther 2020; 20:241. [PMID: 32738903 PMCID: PMC7395214 DOI: 10.1186/s12906-020-03033-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022] Open
Abstract
Several flavonoids have been recognized as nutraceuticals, and myricetin is a good example. Myricetin is commonly found in plants and their antimicrobial and antioxidant activities is well demonstrated. One of its beneficial biological effects is the neuroprotective activity, showing preclinical activities on Alzheimer, Parkinson, and Huntington diseases, and even in amyotrophic lateral sclerosis. Also, myricetin has revealed other biological activities, among them as antidiabetic, anticancer, immunomodulatory, cardiovascular, analgesic and antihypertensive. However, few clinical trials have been performed using myricetin as nutraceutical. Thus, this review provides new insights on myricetin preclinical pharmacological activities, and role in selected clinical trials.
Collapse
Affiliation(s)
- Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrska str., 64, Kyiv, 01033 Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Ahmet Beyatli
- Department of Medicinal and Aromatic Plants, University of Health Sciences, 34668 Istanbul, Turkey
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248001 India
- Uttarakhand State Council for Science and Technology, Vigyan Dham, Dehradun, Uttarakhand 248007 India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248001 India
- Himalayan Environmental Studies and Conservation Organization, Prem Nagar, Dehradun, Uttarakhand 248001 India
| | - Anuj Kumar
- Uttarakhand Council for Biotechnology, Silk Park, Prem Nagar, Dehradun, Uttarakhand 248007 India
| | - Elena Azzini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, 4070386 Concepción, Chile
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899 USA
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043 USA
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice, 5700 South Africa
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|