1
|
Chen YJ, Jia LH, Han TH, Zhao ZH, Yang J, Xiao JP, Yang HJ, Yang K. Osteoporosis treatment: current drugs and future developments. Front Pharmacol 2024; 15:1456796. [PMID: 39188952 PMCID: PMC11345277 DOI: 10.3389/fphar.2024.1456796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteoporosis is a common systemic metabolic disease characterized by a decrease in bone density and bone mass, destruction of bone tissue microstructure, and increased bone fragility leading to fracture susceptibility. Pharmacological treatment of osteoporosis is the focus of current research, and anti-osteoporosis drugs usually play a role in inhibiting bone resorption, promoting bone formation, and having a dual role. However, most of the drugs have the disadvantages of single target and high toxic and side effects. There are many types of traditional Chinese medicines (TCM), from a wide range of sources and mostly plants. Herbal plants have unique advantages in regulating the relationship between osteoporosis and the immune system, acupuncture therapy has significant therapeutic effects in combination with medicine for osteoporosis. The target cells and specific molecular mechanisms of TCM in preventing and treating osteoporosis have not been fully elucidated. At present, there is a lack of comprehensive understanding of the pathological mechanism of the disease. Therefore, a better understanding of the pathological signaling pathways and key molecules involved in the pathogenesis of osteoporosis is crucial for the design of therapeutic targets and drug development. In this paper, we review the development and current status of anti-osteoporosis drugs currently in clinical application and under development to provide relevant basis and reference for drug prevention and treatment of osteoporosis, with the aim of promoting pharmacological research and new drug development.
Collapse
Affiliation(s)
- Ya-jing Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Li-hua Jia
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Jiangxi, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
2
|
Waszczykowska K, Prażanowska K, Kałuzińska Ż, Kołat D, Płuciennik E. Discovering biomarkers for hormone-dependent tumors: in silico study on signaling pathways implicated in cell cycle and cytoskeleton regulation. Mol Genet Genomics 2022; 297:947-963. [PMID: 35532795 DOI: 10.1007/s00438-022-01900-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/16/2022] [Indexed: 02/07/2023]
Abstract
Malignancies dependent on hormone homeostasis include breast, ovary, cervical, prostate, testis and uterine tumors. Hormones are involved in signal transduction which orchestrate processes, such as apoptosis, proliferation, cell cycle or cytoskeleton organization. Currently, there is a need for novel biomarkers which would help to diagnose cancers efficiently. In this study, the genes implicated in signaling that is important in hormone-sensitive carcinogenesis were investigated regarding their prognostic significance. Data of seven cancer cohorts were collected from FireBrowse. 54 gene sets implicated in specific pathways were browsed through MSig database. Profiling was assessed via Monocle3, while gene ontology through PANTHER. For confirmation, correlation analysis was performed using WGCNA. Protein-protein networks were visualized via Cytoscape and impact of genes on survival, as well as cell cycle or cytoskeleton-related prognostic signatures, was tested. Several differences in expression profile were identified, some of them allowed to distinguish histology. Functional annotation revealed that various regulation of cell cycle, adhesion, migration, apoptosis and angiogenesis underlie these differences. Clinical traits, such as histological type or cancer staging, were found during evaluation of module-trait relationships. Of modules, the TopHubs (COL6A3, TNR, GTF2A1, NKX3-1) interacted directly with, e.g., PDGFB, ITGA10, SP1 or AKT3. Among TopHubs and interacting proteins, many showed an impact on hazard ratio and affected the cell cycle or cytoskeleton-related prognostic signatures, e.g., COL1A1 or PDGFB. In conclusion, this study laid the foundation for further hormone-sensitive carcinogenesis research through identification of genes which prove that crosstalk between cell cycle and cytoskeleton exists, opening avenues for future therapeutic strategies.
Collapse
Affiliation(s)
| | - Karolina Prażanowska
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752, Lodz, Poland
| | - Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland.
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| |
Collapse
|
3
|
The Role of 17β-Estrogen in Escherichia coli Adhesion on Human Vaginal Epithelial Cells via FAK Phosphorylation. Infect Immun 2021; 89:e0021921. [PMID: 34424749 DOI: 10.1128/iai.00219-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estrogen, the predominant sex hormone, has been found to be related to the occurrence of vaginal infectious diseases. However, its role in the occurrence and development of bacterial vaginitis caused by Escherichia coli is still unclear. The objective of this study was to investigate the role of 17β-estrogen in E. coli adhesion on human vaginal epithelial cells. The vaginal epithelial cell line VK2/E6E7 was used to study the molecular events induced by estrogen between E. coli and cells. An adhesion study was performed to evaluate the involvement of the estrogen-dependent focal adhesion kinase (FAK) activation with cell adhesion. The phosphorylation status of FAK and estrogen receptor α (ERα) upon estrogen challenge was assessed by Western blotting. Specific inhibitors for ERα were used to validate the involvement of ERα-FAK signaling cascade. The results showed that, following stimulation with 1,000 nM estrogen for 48 h, transient activation of ERα and FAK was observed, as was an increased average number of E. coli cells adhering to vaginal epithelial cells. In addition, estrogen-induced activation of ERα and FAK was inhibited by the specific inhibitor of ERα, especially when the inhibitor reached a 10 μM concentration and acted for 1 h, and a decrease in the number of adherent E. coli cells was observed simultaneously. However, this inhibitory effect diminished as the concentration of estrogen increased. In conclusion, FAK and ERα signaling cascades were associated with the increasing E. coli adherence to vaginal epithelial cells, which was promoted by a certain concentration of estrogen.
Collapse
|
4
|
Yin Z, Hua L, Chen L, Hu D, Li J, An Z, Tian T, Ning H, Ge Y. Bisphenol-A exposure induced neurotoxicity and associated with synapse and cytoskeleton in Neuro-2a cells. Toxicol In Vitro 2020; 67:104911. [PMID: 32512148 DOI: 10.1016/j.tiv.2020.104911] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Bisphenol A (BPA) is an environmental chemical that induces neurotoxic effects for human. Synaptophysin (SYP) and drebrin (Dbn) proteins are involved in regulating synaptic morphology. The stability of the cytoskeleton in nerve cells in the brain is regulated by Tau and MAP2. This study aimed to determine the toxicity of BPA to Neuro-2a cells by investigating the synaptic and cytoskeletal damage induced in these cells by 24 h of exposure to 0 (MEM), 50, 100, 150, or 200 μM BPA or DMSO. MTT and LDH assays showed that the death rates of Neuro-2a cells increased, as the BPA concentration increased. Ultrastructural assays revealed that cells underwent nucleolar swelling as well as nuclear membrane and partial mitochondrial dissolution or condensation, following BPA exposure. Morphological analysis further revealed that compared with the cells in the control group, the cells in the BPA-treated groups shrank, became rounded, and exhibited a reduced number of synapses. BPA also significantly decreased the relative protein and mRNA expression levels of Dbn, MAP2 and Tau (P < .01), but increased the relative protein and mRNA expression levels of SYP (P < .01). These results indicated that BPA suppressed the development and proliferation of Neuro-2a cells by disrupting cellular and synaptic integrity and inflicting cytoskeleton injury.
Collapse
Affiliation(s)
- Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Liushuai Hua
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Jinglong Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Zhixing An
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Tian Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
5
|
Luan T, Liu X, Mao P, Wang X, Rui C, Yan L, Wang Y, Fan C, Li P, Zeng X. The Role of 17β-Estrogen in Candida albicans Adhesion on Human Vaginal Epithelial Cells via FAK Phosphorylation. Mycopathologia 2020; 185:425-438. [PMID: 32185617 DOI: 10.1007/s11046-020-00440-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
PURPOSES To investigate the role of 17β-estrogen in Candida albicans (C. albicans) adhesion on human vaginal epithelial cells in vulvovaginal candidiasis (VVC). METHODS The vaginal epithelial cell line, VK2/E6E7, was used to study the estrogen-induced molecular events between C. albicans and cells. An adhesion study was performed to evaluate the involvement of the estrogen-dependent focal adhesion kinase (FAK) activation in cell adhesion. The phosphorylation status of FAK and estrogen receptor α (ERα) upon estrogen challenge was assessed by western blotting. Specific inhibitors for ERα were used to validate the involvement of ERα-FAK signaling cascade. RESULTS A transient activation of ERα and FAK was observed following the stimulation with 1000 nM estrogen for 48 h, as well as the increased average number of C. albicans adhering to each vaginal epithelial cell. Estrogen-induced activation of ERa and FAK was inhibited by the specific inhibitor of ERα, especially when the inhibitor reached a 10 μM concentration and allowed to act for 12 h. Simultaneously, a decrease in the number of adherent C. albicans was observed. However, this inhibitory effect diminished as the concentration of estrogen increased. CONCLUSION FAK and ERα signaling cascades were involved in the early interaction between the vaginal epithelial cells and C. albicans, which appeared to be linked with the enhanced cell adhesion leading to VVC and promoted by a certain concentration of estrogen.
Collapse
Affiliation(s)
- Ting Luan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Xia Liu
- Department of Obstetrics and Gynecology, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Pengyuan Mao
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Xinyan Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Can Rui
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Lina Yan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Yiquan Wang
- Department of Internal Medicine, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Chong Fan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Ping Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China.
| | - Xin Zeng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Liu Z, Wang Y, Qin W, Chen D, Feng Y, Su H, Shao W, Zhou B, Bu X. Raloxifene alleviates amyloid-β-induced cytotoxicity in HT22 neuronal cells via inhibiting oligomeric and fibrillar species formation. J Biochem Mol Toxicol 2019; 33:e22395. [PMID: 31583774 DOI: 10.1002/jbt.22395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 09/12/2019] [Indexed: 12/22/2022]
Abstract
Raloxifene, a selective estrogen receptor modulator, displays benefits for Alzheimer's disease (AD) prevention in postmenopausal women as hormonal changes during menopause have the potential to influence AD pathogenesis, but the underlying mechanism of its neuroprotection is not entirely clear. In this study, the effects of raloxifene on amyloid-β (Aβ) amyloidogenesis were evaluated. The results demonstrated that raloxifene inhibits Aβ42 aggregation and destabilizes preformed Aβ42 fibrils through directly interacting with the N-terminus and middle domains of Aβ42 peptides. Consequently, raloxifene not only reduces direct toxicity of Aβ42 in HT22 neuronal cells, but also suppresses expressions of tumor necrosis factor-α and transforming growth factor-β induced by Aβ42 peptides, and then alleviates microglia-mediated indirect toxicity of Aβ42 to HT22 neuronal cells. Our results suggested an alternative possible explanation for the neuroprotective activity of raloxifene in AD prevention.
Collapse
Affiliation(s)
- Ziyi Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Youqiao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Daoyuan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanqiao Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Su
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiyan Shao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Binhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Park HK, Ilango S, Charriez CM, Checkoway H, Riley D, Standaert DG, Bordelon Y, Shprecher DR, Reich SG, Hall D, Kluger B, Marras C, Jankovic J, Dubinsky R, Litvan I. Lifetime exposure to estrogen and progressive supranuclear palsy: Environmental and Genetic PSP study. Mov Disord 2018; 33:468-472. [PMID: 29460982 PMCID: PMC5840026 DOI: 10.1002/mds.27336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/10/2017] [Accepted: 01/11/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Studies suggesting a protective effect of estrogen in neurodegenerative diseases prompted us to investigate this relationship in progressive supranuclear palsy (PSP). METHODS This case-control study evaluated the self-reported reproductive characteristics and estrogen of 150 women with PSP and 150 age-matched female controls who participated in the Environmental Genetic-PSP study. Conditional logistic regression models were generated to examine associations of PSP with estrogen. RESULTS There was no association between years of estrogen exposure duration and PSP. There was a suggestion of an inverse association between composite estrogen score and PSP that did not reach statistical significance (P = .06). Any exposure to estrogen replacement therapy halved the risk of PSP (odds ratio = 0.52; 95% confidence interval = 0.30-0.92; P = .03). Among PSP cases, earlier age at menarche was associated with better performance on Hoehn and Yahr stage (β = -0.60; SE = 0.26; P = .02) and Unified Parkinson's Disease Rating Scale II score (β = -5.19; SE = 2.48; P = .04) at clinical examination. CONCLUSIONS This case-control study suggests a protective role of lifetime estrogen exposure in PSP. Future studies will be needed to confirm this association. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hee Kyung Park
- Department of Neurology, Inje University Ilsan-Paik Hospital, Goyang, Korea
- Movement Disorder Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Sindana Ilango
- Graduate School of Public Health, San Diego State University
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, California, USA
| | - Christina M. Charriez
- Movement Disorder Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Harvey Checkoway
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, California, USA
| | | | - David G. Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yvette Bordelon
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - David R. Shprecher
- Banner Sun Health Research Institute, Sun City, AZ
- Department of Neurology, University of Arizona College of Medicine, Phoenix, AZ
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stephen G. Reich
- Department of Neurology, University of Maryland, Baltimore, Maryland, USA
| | - Deborah Hall
- Department of Neurological Sciences, Rush University, Chicago, Illinois, USA
- Department of Neurology, University of Colorado, Denver, Colorado, USA
| | - Benzi Kluger
- Department of Neurology, University of Colorado, Denver, Colorado, USA
| | - Connie Marras
- Morto and Gloria Shulman Movement Disorders Centre and the Edmond J. Saftra Program in Parkinson’s Research, Toronto Western Hospital, University of Toronto, Toronto, Ontario, USA
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine
| | | | - Irene Litvan
- Movement Disorder Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
- Division of Movement Disorders, Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|