1
|
Edelstein R, Gutterman S, Newman B, Van Horn JD. Assessment of Sports Concussion in Female Athletes: A Role for Neuroinformatics? Neuroinformatics 2024:10.1007/s12021-024-09680-8. [PMID: 39078562 DOI: 10.1007/s12021-024-09680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Over the past decade, the intricacies of sports-related concussions among female athletes have become readily apparent. Traditional clinical methods for diagnosing concussions suffer limitations when applied to female athletes, often failing to capture subtle changes in brain structure and function. Advanced neuroinformatics techniques and machine learning models have become invaluable assets in this endeavor. While these technologies have been extensively employed in understanding concussion in male athletes, there remains a significant gap in our comprehension of their effectiveness for female athletes. With its remarkable data analysis capacity, machine learning offers a promising avenue to bridge this deficit. By harnessing the power of machine learning, researchers can link observed phenotypic neuroimaging data to sex-specific biological mechanisms, unraveling the mysteries of concussions in female athletes. Furthermore, embedding methods within machine learning enable examining brain architecture and its alterations beyond the conventional anatomical reference frame. In turn, allows researchers to gain deeper insights into the dynamics of concussions, treatment responses, and recovery processes. This paper endeavors to address the crucial issue of sex differences in multimodal neuroimaging experimental design and machine learning approaches within female athlete populations, ultimately ensuring that they receive the tailored care they require when facing the challenges of concussions. Through better data integration, feature identification, knowledge representation, validation, etc., neuroinformaticists, are ideally suited to bring clarity, context, and explainabilty to the study of sports-related head injuries in males and in females, and helping to define recovery.
Collapse
Affiliation(s)
- Rachel Edelstein
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA.
| | - Sterling Gutterman
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| | - Benjamin Newman
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| |
Collapse
|
2
|
Pierre K, Molina V, Shukla S, Avila A, Fong N, Nguyen J, Lucke-Wold B. Chronic traumatic encephalopathy: Diagnostic updates and advances. AIMS Neurosci 2022; 9:519-535. [PMID: 36660076 PMCID: PMC9826753 DOI: 10.3934/neuroscience.2022030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that occurs secondary to repetitive mild traumatic brain injury. Current clinical diagnosis relies on symptomatology and structural imaging findings which often vary widely among those with the disease. The gold standard of diagnosis is post-mortem pathological examination. In this review article, we provide a brief introduction to CTE, current diagnostic workup and the promising research on imaging and fluid biomarker diagnostic techniques. For imaging, we discuss quantitative structural analyses, DTI, fMRI, MRS, SWI and PET CT. For fluid biomarkers, we discuss p-tau, TREM2, CCL11, NfL and GFAP.
Collapse
Affiliation(s)
- Kevin Pierre
- University of Florida Department of Radiology, Gainesville 32603, Florida, USA
| | - Vanessa Molina
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Shil Shukla
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Anthony Avila
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Nicholas Fong
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Jessica Nguyen
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Brandon Lucke-Wold
- University of Florida Department of Neurosurgery, Gainesville 32603, Florida, USA,* Correspondence:
| |
Collapse
|
3
|
Imbimbo BP, Ippati S, Watling M, Balducci C. A critical appraisal of tau-targeting therapies for primary and secondary tauopathies. Alzheimers Dement 2021; 18:1008-1037. [PMID: 34533272 DOI: 10.1002/alz.12453] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Primary tauopathies are neurological disorders in which tau protein deposition is the predominant pathological feature. Alzheimer's disease is a secondary tauopathy with tau forming hyperphosphorylated insoluble aggregates. Tau pathology can propagate from region to region in the brain, while alterations in tau processing may impair tau physiological functions. METHODS We reviewed literature on tau biology and anti-tau drugs using PubMed, meeting abstracts, and ClnicalTrials.gov. RESULTS The past 15 years have seen >30 drugs interfering with tau aggregation, processing, and accumulation reaching the clinic. Initial results with tau aggregation inhibitors and anti-tau monoclonal antibodies have not shown clinical efficacy. DISCUSSION The reasons for these clinical failures are unclear but could be linked to the clearing of physiological forms of tau by non-specific drugs. Research is now concentrating efforts on developing reliable translational animal models and selective compounds targeting specific tau epitopes, neurotoxic tau aggregates, and post-translational tau modifications.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | - Stefania Ippati
- San Raffaele Scientific Institute, San Raffaele Hospital, Milan, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| |
Collapse
|
4
|
Pierre K, Dyson K, Dagra A, Williams E, Porche K, Lucke-Wold B. Chronic Traumatic Encephalopathy: Update on Current Clinical Diagnosis and Management. Biomedicines 2021; 9:biomedicines9040415. [PMID: 33921385 PMCID: PMC8069746 DOI: 10.3390/biomedicines9040415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic traumatic encephalopathy is a disease afflicting individuals exposed to repetitive neurotrauma. Unfortunately, diagnosis is made by postmortem pathologic analysis, and treatment options are primarily symptomatic. In this clinical update, we review clinical and pathologic diagnostic criteria and recommended symptomatic treatments. We also review animal models and recent discoveries from pre-clinical studies. Furthermore, we highlight the recent advances in diagnosis using diffusor tensor imaging, functional magnetic resonance imaging, positron emission tomography, and the fluid biomarkers t-tau, sTREM2, CCL11, NFL, and GFAP. We also provide an update on emerging pharmaceutical treatments, including immunotherapies and those that target tau acetylation, tau phosphorylation, and inflammation. Lastly, we highlight the current literature gaps and guide future directions to further improve clinical diagnosis and management of patients suffering from this condition.
Collapse
Affiliation(s)
- Kevin Pierre
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Kyle Dyson
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Abeer Dagra
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Eric Williams
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Ken Porche
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
- Correspondence:
| |
Collapse
|
5
|
Chen L. The important functional role of TDP-43 plays in amyotrophic lateral sclerosis-frontotemporal dementia. Neural Regen Res 2021; 16:682-683. [PMID: 33063724 PMCID: PMC8067922 DOI: 10.4103/1673-5374.293142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Liam Chen
- Neuropathology Division, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Abstract
The infectious template-mediated protein conversion is a unique mechanism for the onset of rare and fatal neurodegenerative disorders known as transmissible spongiform encephalopathies, or prion diseases, which affect humans and other animal species. However, emerging studies are now demonstrating prion-like mechanisms of self-propagation of protein misfolding in a number of common, non-infectious neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. It has been proposed that distinct and unrelated proteins (beta-amyloid, tau, α-synuclein, TAR DNA-binding protein 43 and huntingtin, etc.) associated with common neurodegenerative disorders can seed conversion and spread via cell-to-cell transfer, sustaining the transmission of neurotoxic agents along a stereotypic route, sharing features at the heart of the intrinsic nature of prions. Here we review the most recent development on both the molecular mechanisms underlying the pathogenesis of prion-like neurodegenerative diseases as well as innovative methods and strategies for potential therapeutic applications.
Collapse
Affiliation(s)
- Zhaohui Zhang
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liam Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|