1
|
Liu J, Zhang Y, Jia F, Zhang H, Luo L, Liao Y, Ouyang M, Yi X, Zhu R, Bai W, Ning G, Li X, Qu H. Sex differences in fetal brain functional network topology. Cereb Cortex 2024; 34:bhae111. [PMID: 38517172 DOI: 10.1093/cercor/bhae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
The fetal period is a critical stage in brain development, and understanding the characteristics of the fetal brain is crucial. Although some studies have explored aspects of fetal brain functional networks, few have specifically focused on sex differences in brain network characteristics. We adopted the graph theory method to calculate brain network functional connectivity and topology properties (including global and nodal properties), and further compared the differences in these parameters between male and female fetuses. We found that male fetuses showed an increased clustering coefficient and local efficiency than female fetuses, but no significant group differences concerning other graph parameters and the functional connectivity matrix. Our study suggests the existence of sex-related distinctions in the topological properties of the brain network at the fetal stage of development and demonstrates an increase in brain network separation in male fetuses compared with female fetuses.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| | - Yujin Zhang
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| | - Fenglin Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| | - Hongding Zhang
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| | - Lekai Luo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| | - Yi Liao
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| | - Minglei Ouyang
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| | - Xiaoxue Yi
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| | - Ruixi Zhu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| | - Wanjing Bai
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| | - Gang Ning
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| | - Xuesheng Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan, P.R. China
| |
Collapse
|
2
|
Wei D, Zhao L, Hua XY, Zheng MX, Wu JJ, Xu JG. A bibliometric analysis of brachial plexus injury from 1980 to 2022. Heliyon 2024; 10:e26175. [PMID: 38434026 PMCID: PMC10906180 DOI: 10.1016/j.heliyon.2024.e26175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
Background Brachial plexus injury is a common severe peripheral nerve injury with high disability. At present, the bibliometric analysis of brachial plexus injury is basically unknown. Methods This article analyzes the data retrieved to the web of science and uses the R language (version 4.2), Citespace (version 6.1.R3 Advanced), Vosviewer (Lei deng university) to make a scientific map. Specifically, we analyze the main publication countries, institutions, journals where the article is published, and the cooperative relationship between different institutions, the relationship between authors, main research directions in this field, and current research hotspots. Results From 1980 to 2022, the total number of publications is 1542. In terms of countries where articles were published, 551 records were published in the United States, accounting for 35% of the total. With 74 articles, Fudan University ranks first in the world in terms of the number of articles issued by the institution, followed by 72 articles from Mayo Clinic. The magazine with the largest number of articles is JOURNAL OF HAND SURGERY-AMERICAN VOLUME, which has published 87 articles in total. GU YD (Gu Yu-Dong) team (Fudan University) and spinner RJ (Robert J Spinner) team (Mayo clinic) are in a leading position in this field. Nerve transfer and nerve reconstruction have been a hot topic of brachial plexus injury. "Spinal nerve root repair and reimplantation of avulsed ventral roots into the spinal cord after brachial plexus injury" has the strongest citation bursts. Conclusion Research on brachial plexus injury shows a trend of increasing heat. At present, there is a lack of communication and cooperation between scholars from different countries. Nerve transfer and nerve reconstruction are the current and future research directions in the treatment of brachial plexus injury.
Collapse
Affiliation(s)
- Dong Wei
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhao
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 400015, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xu-Yun Hua
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China
| | - Mou-Xiong Zheng
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China
| | - Jia-Jia Wu
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China
| |
Collapse
|
3
|
Yang Y, Li T, Deng Y, Wang J, Li Y, Liu H, Wang W. Dynamic alternations of interhemispheric functional connectivity in brachial plexus avulsion injury patients with nerve transfer: a resting state fMRI study. Cereb Cortex 2024; 34:bhad415. [PMID: 37955665 DOI: 10.1093/cercor/bhad415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Brachial plexus avulsion injury (BPAI) is a severe peripheral nerve injury that leads to functional reorganization of the brain. However, the interhemispheric coordination following contralateral cervical 7 nerve transfer remains unclear. In this study, 69 BPAI patients underwent resting-state functional magnetic resonance imaging examination to assess the voxel-mirrored homotopic connectivity (VMHC), which reveals the interhemispheric functional connection. The motor function of the affected upper extremity was measured using the Fugl-Meyer Assessment of Upper Extremity (FMA-UE) scale. The VMHC analysis showed significant differences between the bilateral precentral gyrus, supplementary motor area (SMA), middle frontal gyrus (MFG), and insula. Compared to the preoperative group, the VMHC of the precentral gyrus significantly increased in the postoperative short-term group (PO-ST group) but decreased in the postoperative long-term group (PO-LT group). Additionally, the VMHC of the SMA significantly increased in the PO-LT group. Furthermore, the VMHC of the precentral gyrus in the PO-ST group and the SMA in the PO-LT group were positively correlated with the FMA-UE scores. These findings highlight a positive relationship between motor recovery and increased functional connectivity of precentral gyrus and SMA, which provide possible therapeutic targets for future neuromodulation interventions to improve rehabilitation outcomes for BPAI patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Tie Li
- Department of Hand Surgery, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Yan Deng
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Junlong Wang
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Yajie Li
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Institute of Medical Imaging, No. 130 Dongan Road, Shanghai 200032, China
| | - Hanqiu Liu
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Weiwei Wang
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China
| |
Collapse
|
4
|
Brain Network Changes in Lumbar Disc Herniation Induced Chronic Nerve Roots Compression Syndromes. Neural Plast 2022; 2022:7912410. [PMID: 35607420 PMCID: PMC9124092 DOI: 10.1155/2022/7912410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
Lumbar disc herniation (LDH) induced nerve compression syndromes have been a prevalent problem with complex neural mechanisms. Changes in distributed brain areas are involved in the occurrence and persistence of syndromes. The present study aimed to investigate the changes of brain functional network in LDH patients with chronic sciatica using graph theory analysis. A total of thirty LDH adults presenting L4 and/or L5 root (s) compression syndromes (LDH group) and thirty age-, sex-, BMI- and education-matched healthy control (HC group) were recruited for functional MRI scan. Whole-brain functional network was constructed for each participant using Pearson's correlation. Global and nodal properties were calculated and compared between two groups, including small-worldness index, clustering coefficient, characteristic path length, degree centrality (DC), betweenness centrality (BC) and nodal efficiency. Both LDH and HC groups showed small-world architecture in the functional network of brain. However, LDH group showed that nodal centralities (DC, BC and nodal efficiency) increased in opercular part of inferior frontal gyrus; and decreased in orbital part of inferior frontal gyrus, lingual cortex and inferior occipital gyrus. The DC and efficiency in the right inferior occipital gyrus were negatively related with the Oswestry Disability Index in LDH group. In conclusion, the LDH-related chronic sciatica syndromes may induce regional brain alterations involving self-referential, emotional responses and pain regulation functions. But the whole-brain small-world architecture was not significantly disturbed. It may provide new insights into LDH patients with radicular symptoms from new perspectives.
Collapse
|
5
|
Chao CC, Hsieh PC, Janice Lin CH, Huang SL, Hsieh ST, Chiang MC. Impaired brain network architecture as neuroimaging evidence of pain in diabetic neuropathy. Diabetes Res Clin Pract 2022; 186:109833. [PMID: 35314258 DOI: 10.1016/j.diabres.2022.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/14/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022]
Abstract
AIMS To investigate alterations in structural brain networks due to chronic diabetic neuropathic pain. METHODS The current study recruited 24 patients with painful diabetic neuropathy (PDN) to investigate the influences of chronic pain on the brain. Thirteen patients with painless diabetic neuropathy (PLDN) and 24 healthy adults were recruited as disease and healthy controls. White matter connectivity of the brain networks constructed by diffusion tractography was compared across groups using the Network-based statistic (NBS) method. Graph theoretical analysis was further applied to assess topological changes of the brain networks. RESULTS The PDN patients had a significant reduction in white matter connectivity compared with PLDN and controls in the limbic and temporal regions, particularly the insula, hippocampus and parahippocampus, the amygdala, and the middle temporal gyrus. The PDN patients also exhibited an altered topology of the brain networks with reduced global efficiency and betweenness centrality. CONCLUSION The current findings indicate that topological alterations of brain networks may serve as a biomarker for pain-induced maladaptive reorganization of the brain in PDN. Given the high prevalence of diabetes worldwide, novel insights from network sciences to investigate the central mechanisms of diabetic neuropathic pain are warranted.
Collapse
Affiliation(s)
- Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Paul-Chen Hsieh
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ho Janice Lin
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Yeong-An Orthopedic and Physical Therapy Clinic, Taipei, Taiwan
| | - Shin-Leh Huang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan.
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Center of Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Xing XX, Hua XY, Zheng MX, Wu JJ, Huo BB, Ma J, Ma ZZ, Li SS, Xu JG. Abnormal Brain Connectivity in Carpal Tunnel Syndrome Assessed by Graph Theory. J Pain Res 2021; 14:693-701. [PMID: 33732015 PMCID: PMC7959208 DOI: 10.2147/jpr.s289165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/25/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Numerous resting-state functional magnetic resonance imaging (fMRI) researches have indicated that large-scale functional and structural remodeling occurs in the whole brain despite an intact sensorimotor network after carpal tunnel syndrome (CTS). Investigators aimed to explore alterations of the global and nodal properties that occur in the whole brain network of patients with CTS based on topographic theory. Methods Standard-compliant fMRI data were collected from 27 patients with CTS in bilateral hands and 19 healthy control subjects in this cross-sectional study. The statistics based on brain networks were calculated the differences between the patients and the healthy. Several topological properties were computed, such as the small-worldness, nodal clustering coefficient, characteristic path length, and degree centrality. Results Compared to those of the healthy controls, the global properties of the CTS group exhibited a decreased characteristic path length. Changes in the local-level properties included a decreased nodal clustering coefficient in 6 separate brain regions and significantly different degree centrality in several brain regions that were related to sensorimotor function and pain. Discussion The study suggested that CTS reinforces global connections and makes their networks more random. The changed nodal properties were affiliated with basal ganglia-thalamo-cortical circuits and the pain matrix. These results provided new insights for improving our understanding of abnormal topological theory in relation to the functional brain networks of CTS patients. Perspective This article presents that the CTS patients’ brain with a higher global efficiency. And the significant alterations in several brain regions which are more related to pain and motor processes. The results provided effective complements to the neural mechanisms underlying CTS.
Collapse
Affiliation(s)
- Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Yangzhi Rehabilitation Hospital, Tongji University, Shanghai, People's Republic of China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhen-Zhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Si-Si Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Yuan YS, Yu F, Zhang YJ, Niu SP, Xu HL, Kou YH. Changes in proteins related to early nerve repair in a rat model of sciatic nerve injury. Neural Regen Res 2021; 16:1622-1627. [PMID: 33433493 PMCID: PMC8323673 DOI: 10.4103/1673-5374.301025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Peripheral nerves have a limited capacity for self-repair and those that are severely damaged or have significant defects are challenging to repair. Investigating the pathophysiology of peripheral nerve repair is important for the clinical treatment of peripheral nerve repair and regeneration. In this study, rat models of right sciatic nerve injury were established by a clamping method. Protein chip assay was performed to quantify the levels of neurotrophic, inflammation-related, chemotaxis-related and cell generation-related factors in the sciatic nerve within 7 days after injury. The results revealed that the expression levels of neurotrophic factors (ciliary neurotrophic factor) and inflammation-related factors (intercellular cell adhesion molecule-1, interferon γ, interleukin-1α, interleukin-2, interleukin-4, interleukin-6, monocyte chemoattractant protein-1, prolactin R, receptor of advanced glycation end products and tumor necrosis factor-α), chemotaxis-related factors (cytokine-induced neutrophil chemoattractant-1, L-selectin and platelet-derived growth factor-AA) and cell generation-related factors (granulocyte-macrophage colony-stimulating factor) followed different trajectories. These findings will help clarify the pathophysiology of sciatic nerve injury repair and develop clinical treatments of peripheral nerve injury. This study was approved by the Ethics Committee of Peking University People’s Hospital of China (approval No. 2015-50) on December 9, 2015.
Collapse
Affiliation(s)
- Yu-Song Yuan
- Department of Trauma and Orthopedics, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Fei Yu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing; National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Ya-Jun Zhang
- National Center for Trauma Medicine, Beijing, China
| | - Su-Ping Niu
- Office of Academic Research, Peking University People's Hospital, Beijing, China
| | - Hai-Lin Xu
- Department of Trauma and Orthopedics; Diabetic Foot Treatment Center, Peking University People's Hospital, Beijing, China
| | - Yu-Hui Kou
- Department of Trauma and Orthopedics, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
8
|
Lu YC, Wu JJ, Ma H, Hua XY, Xu JG. Functional Organization of Brain Network in Peripheral Neural Anastomosis Rats after Electroacupuncture: An ICA and Connectome Analysis. Neuroscience 2020; 442:216-227. [PMID: 32629154 DOI: 10.1016/j.neuroscience.2020.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/19/2022]
Abstract
Acupuncture is a mild therapy in rehabilitation practice of peripheral nerve injury. Previous studies confirmed the deep participation of brain plasticity in the process of functional restoration. The therapeutic effect of acupuncture is also believed to be closely associated with brain plasticity, especially in the hypothalamus and limbic system. But the fuzzy neural mechanism somehow limits the application or improvement of this therapy. There is little information about the effect of acupuncture on topological properties of brain networks. Instead of functional segregation approach, we utilized graph theory method to analyze the large-scale and distributed properties of information processing. We first established rat model of sciatic nerve injury and performed rehabilitation therapy of electroacupuncture for 120 days. Meanwhile, we used independent component analysis to extract seven sub-networks from the whole brain. Then measurements of graph theory were calculated in each sub-network as well as the whole brain network. We found no significant difference of any measurement in whole brain network among intervention group, model group and normal group. But the assortativity, hierarchy, small-world properties of sub-network displayed significant differences among three groups. It induces changes of neural plasticity in several sub-networks instead of whole brain network. We attributed the changes to the enhancement of the short-term compensatory adaptation and the reduction of the long-term overacting regional information transmission. The present study may shed light on the vague distinction of large-scale property of brain networks after electroacupuncture, which leads to a better understanding of this ancient traditional Chinese therapy.
Collapse
Affiliation(s)
- Ye-Chen Lu
- School of Rehabilitation Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai China
| | - Hao Ma
- Department of Trauma and Orthopedics, First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Xu-Yun Hua
- Department of Trauma and Orthopedics, Yueyang Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai China.
| |
Collapse
|
9
|
Si SZ, Liu X, Wang JF, Wang B, Zhao H. Brain networks modeling for studying the mechanism underlying the development of Alzheimer's disease. Neural Regen Res 2019; 14:1805-1813. [PMID: 31169199 PMCID: PMC6585551 DOI: 10.4103/1673-5374.257538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Alzheimer's disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions. Although connections between changes in brain networks of Alzheimer's disease patients have been established, the mechanisms that drive these alterations remain incompletely understood. This study, which was conducted in 2018 at Northeastern University in China, included data from 97 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset covering genetics, imaging, and clinical data. All participants were divided into two groups: normal control (n = 52; 20 males and 32 females; mean age 73.90 ± 4.72 years) and Alzheimer's disease (n = 45, 23 males and 22 females; mean age 74.85 ± 5.66). To uncover the wiring mechanisms that shaped changes in the topology of human brain networks of Alzheimer's disease patients, we proposed a local naïve Bayes brain network model based on graph theory. Our results showed that the proposed model provided an excellent fit to observe networks in all properties examined, including clustering coefficient, modularity, characteristic path length, network efficiency, betweenness, and degree distribution compared with empirical methods. This proposed model simulated the wiring changes in human brain networks between controls and Alzheimer's disease patients. Our results demonstrate its utility in understanding relationships between brain tissue structure and cognitive or behavioral functions. The ADNI was performed in accordance with the Good Clinical Practice guidelines, US 21CFR Part 50-Protection of Human Subjects, and Part 56-Institutional Review Boards (IRBs)/Research Good Clinical Practice guidelines Institutional Review Boards (IRBs)/Research Ethics Boards (REBs).
Collapse
Affiliation(s)
- Shuai-Zong Si
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Xiao Liu
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Jin-Fa Wang
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Bin Wang
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Hai Zhao
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| |
Collapse
|