1
|
Butt TH, Tobiume M, Re DB, Kariya S. Physical Exercise Counteracts Aging-Associated White Matter Demyelination Causing Cognitive Decline. Aging Dis 2024; 15:2136-2148. [PMID: 38377028 PMCID: PMC11346408 DOI: 10.14336/ad.2024.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024] Open
Abstract
In the central nervous system, oligodendrocytes wrap around neuronal axons to form myelin, an insulating layer or sheath that allows for the efficient conductance of action potentials. In addition to structural insulation, myelin provides encased axons with nutrient, metabolic and defensive support. Demyelination, or myelin loss, can therefore cause axonal dysfunction, leading to neurological impairment and disease. In Alzheimer's disease (AD), progressive white matter demyelination is acknowledged as one of the earliest pathologies preceding symptom onset. Unfortunately, current pharmacotherapy for slowing demyelination or promoting remyelination in AD is nonexistent. Exercise is recognized for its wide-ranging benefits to human health, including improved mental health and the prevention of lifestyle-related diseases. Mounting evidence suggests the contribution of physical activity in delaying the progression of dementia in elderly populations. Recent mechanistic studies have shown that exercise facilitates myelination in the brain through the vitalization of intrinsic pro-myelination cues, such as increased neurotrophic factors and electrical activity. In this review, we summarize and discuss the potential of physical exercise on counteracting aging-associated white matter demyelination, which causes cognitive decline in AD. We highlight the need of further basic and clinical research investigations on this topic to establish novel approaches for healthy and improved brain aging.
Collapse
Affiliation(s)
- Tanya H Butt
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Makoto Tobiume
- Unit for Respiratory System & Dementia in the Division of Internal Medicine, Katsuren Hospital, Itoman, Okinawa, Japan
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
- NIEHS Center for Environmental Health Sciences in Northern Manhattan, Columbia University, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Shingo Kariya
- Unit for Nervous System & Dementia in the Division of Internal Medicine, Katsuren Hospital, Itoman, Okinawa, Japan
| |
Collapse
|
2
|
Li Y, Cui R, Liu S, Qin Z, Sun W, Cheng Y, Liu Q. The efficacy and safety of post-stroke cognitive impairment therapies: an umbrella review. Front Pharmacol 2023; 14:1207075. [PMID: 37693907 PMCID: PMC10483224 DOI: 10.3389/fphar.2023.1207075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Background: Stroke survivors are at significantly increased risk of cognitive impairment, which affects patients' independence of activities of daily living (ADLs), social engagement, and neurological function deficit. Many studies have been done to evaluate the efficacy and safety of post-stroke cognitive impairment (PSCI) treatment, and due to the largely inconsistent clinical data, there is a need to summarize and analyze the published clinical research data in this area. Objective: An umbrella review was performed to evaluate the efficacy and safety of PSCI therapies. Methods: Three independent authors searched for meta-analyses and systematic reviews on PubMed, the Cochrane Library, and the Web of Science to address this issue. We examined ADL and Barthel index (BI), Montreal Cognitive Assessment (MoCA), neurological function deficit as efficacy endpoints, and the incidence of adverse events as safety profiles. Results: In all, 312 studies from 19 eligible publications were included in the umbrella review. The results showed that angiotensin-converting enzyme inhibitors (ACEI) and N-methyl-D-aspartate (NMDA) antagonists, cell therapies, acupuncture, and EGB76 can improve the MoCA and ADL, and the adverse effects were mild for the treatment of PSCI. Moreover, Vinpocetine, Oxiracetam, Citicoline, thrombolytic therapy, Actovegin, DL-3-n-Butylphthalide, and Nimodipine showed adverse events or low article quality in patients with PSCI. However, the research evidence is not exact and further research is needed. Conclusion: Our study demonstrated that ACEI inhibitors (Donepezil) and NMDA antagonists (Memantine), EGB761, and acupuncture are the ADL and BI, MoCA, and neurological function deficit medication/therapy, respectively, for patients with PSCI. Clinical Trial Registration: https://inplasy.com/inplasy-2022-11-0139/; Identifier: INPLASY2022110139.
Collapse
Affiliation(s)
- Yongbiao Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Ruyi Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaobo Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Zhiping Qin
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Wenjing Sun
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Qingshan Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| |
Collapse
|
3
|
Le V, Wollard K, Lee RW, Surineni K. A Case of Persistent Postictal and Inter-ictal Delirium. Kans J Med 2023; 16:214-217. [PMID: 37791029 PMCID: PMC10544873 DOI: 10.17161/kjm.vol16.20116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 10/05/2023] Open
Affiliation(s)
- Vy Le
- University of Kansas School of Medicine-Wichita, Wichita, KS
- Department of Psychiatry and Behavioral Sciences
| | - Kylee Wollard
- University of Kansas School of Medicine-Wichita, Wichita, KS
| | - Ricky W Lee
- Department of Internal Medicine
- Ascension Via Christi, Wichita, KS
| | - Kamalakar Surineni
- University of Kansas School of Medicine-Wichita, Wichita, KS
- Department of Psychiatry and Behavioral Sciences
| |
Collapse
|
4
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
5
|
Tang B, Wang Y, Ren J. Basic information about memantine and its treatment of Alzheimer's disease and other clinical applications. IBRAIN 2023; 9:340-348. [PMID: 37786758 PMCID: PMC10527776 DOI: 10.1002/ibra.12098] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 10/04/2023]
Abstract
Memantine is a noncompetitive moderate-affinity strong voltage-dependent N-methyl-D-aspartate receptor antagonist. It has been used to treat Alzheimer's disease (AD) since 1989. In 2018, it became the second most commonly used drug for the treatment of dementia in the world. AD is nonreversible, and memantine can only relieve the symptoms of AD but not cure it. Over the past half-century, memantine's research and clinical application have been extensively developed. In this review, the basic composition of memantine, the mechanism and limitations of memantine in the treatment of AD, memantine combination therapy, comparison of memantine with other drugs for AD, and clinical studies of memantine in other diseases are reviewed to provide a valuable reference for further research and application of memantine for the treatment of AD.
Collapse
Affiliation(s)
- Bin‐Can Tang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Ya‐Ting Wang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Jie Ren
- Department of NeuroscienceThe University of SheffieldSheffieldUK
| |
Collapse
|
6
|
Perlett L, Smith EE. Treatment of Vascular and Neurodegenerative Forms of Cognitive Impairment and Dementias. Clin Geriatr Med 2023; 39:135-149. [PMID: 36404026 DOI: 10.1016/j.cger.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ideally, dementia care should be provided by a collaborative team. Eligible patients should be treated with the cognitive-enhancing medications, the cholinesterase inhibitors and memantine. For most of the common causes of dementia, there are no disease-modifying medications, with the exception that vascular dementia can be prevented by treating vascular risk factors to prevent stroke. There is hope that Alzheimer disease can be treated by using monoclonal antibodies that target amyloid beta, although more trials are needed. Holistic, patient-centered care can enhance quality and extend the time that the patient can live safely in the community.
Collapse
Affiliation(s)
- Landon Perlett
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Eric E Smith
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Clinical Trials of New Drugs for Vascular Cognitive Impairment and Vascular Dementia. Int J Mol Sci 2022; 23:ijms231911067. [PMID: 36232368 PMCID: PMC9569827 DOI: 10.3390/ijms231911067] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Population aging has challenged the treatment of cognitive impairment or dementia. Vascular dementia is the second leading cause of dementia after Alzheimer’s disease. Cognitive consequences after ischemic brain injury have been recognized as a preferred target for therapeutic strategies, prompting the search for potential agents. The keyword “vascular dementia” was used to search ClinicalTrials.gov to determine agents represented in phases I, II, III, and IV. The agents were classified on the basis of their mechanisms. Of the 17 randomized controlled trials meeting our inclusion criteria, 9 were completed in the past 10 years, and 8 are ongoing or in the planning stages. We also identified one trial in phase I, nine in phase II, six in phase III, and one in phase IV. Fewer trials of new drugs for improving cognition or ameliorating the behavioral and psychological symptoms of dementia target vascular dementia than Alzheimer’s dementia. Drug trials on vascular dementia overlap with drug trials targeting functional outcomes in cerebrovascular disease. International pharmaceutical companies’ investment in new drugs targeting VCI and vascular dementia remains insufficient.
Collapse
|
8
|
Li J, Wang N, Nie H, Wang S, Jiang T, Ma X, Liu W, Tian K. Long Non-coding RNA RMST Worsens Ischemic Stroke via MicroRNA-221-3p/PIK3R1/TGF-β Signaling Pathway. Mol Neurobiol 2022; 59:2808-2821. [PMID: 35217983 DOI: 10.1007/s12035-021-02632-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022]
Abstract
Much efforts have been made to probe the mechanism underlying ischemic stroke (IS). This study was proposed to uncover the role of long non-coding RNA rhabdomyosarcoma 2 related transcript (RMST) in IS through microRNA-221-3p (miR-221-3p)/phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1)/transforming growth factor-β (TGF-β) axis. Neurological behavioral function, pathological changes in brain tissue, oxidative stress, and inflammation responses in middle cerebral artery occlusion (MCAO) mice were tested. RMST, miR-221-3p, PIK3R1, and TGF-β signaling-related protein expression in brain tissues of MCAO mice were detected. RMST and PIK3R1 were elevated, miR-221-3p was downregulated, and TGF-β pathway was activated in mice after MCAO. Restored miR-221-3p or depleted RMST improved neurological behavioral functions, relieved pathological injury in brain tissue, and repressed oxidative stress and inflammation in mice after MCAO. Depleted PIK3R1 or restored miR-221-3p offsets the negative effects of overexpressed RMST on mice with MCAO. The present work highlights that RMST augments IS through reducing miR-221-3p-mediated regulation of PIK3R1 and activating TGF-β pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Ning Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Huan Nie
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Shan Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Tongtong Jiang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Xuehan Ma
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Wenjuan Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150081, China.
| | - Kuo Tian
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150081, China.
| |
Collapse
|
9
|
Voznyuk IA, Zavadenko NN, Kamchatnov PR, Levin OS, Parfenov VA, Solovieva EY, Hasanova DR. [Results of the round table: modern approaches to drug therapy of cognitive impairment in cerebrovascular pathology]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:147-152. [PMID: 34481451 DOI: 10.17116/jnevro2021121081147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
On June 25-26, 2021, a round table was held in Kazan with the participation of leading neurologists of Russia, where the issues of treatment of patients with cognitive impairment due to cerebrovascular diseases were discussed. Cognitive disorders of vascular genesis (VCD) are widespread in the population, are a common cause of a decrease in the quality of life and restriction of daily activity. The cause of VCD is both acute and chronic cerebrovascular diseases. An effective way to prevent VCD is to control cardiovascular risk factors, ensure a sufficient level of cognitive and physical activity throughout life. The role of drug therapy, aimed, among other things, at normalizing metabolic processes in the brain, is extremely important. The data on the mechanisms of action of the new domestic drug prospecta, the results of its clinical trials in patients with VCD are presented.
Collapse
Affiliation(s)
- I A Voznyuk
- Kirov Military Medical Academy, St Petersburg, Russia.,Janelidze Saint Petersburg Research Institute of Emergency Medicine, St. Petersburg, Russia
| | - N N Zavadenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - P R Kamchatnov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - O S Levin
- Russian Medical Academy Continuous Professional Education, Moscow, Russia
| | - V A Parfenov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - E Yu Solovieva
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
10
|
Kiris I, Basar MK, Sahin B, Gurel B, Coskun J, Mroczek T, Baykal AT. Evaluation of the Therapeutic Effect of Lycoramine on Alzheimer's Disease in Mouse Model. Curr Med Chem 2021; 28:3449-3473. [PMID: 33200692 DOI: 10.2174/0929867327999201116193126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease is one of the leading health problems characterized by the accumulation of Aβ and hyperphosphorylated tau that account for the senile plaque formations causing extensive cognitive decline. Many of the clinical diagnoses of Alzheimer's disease are made in the late stages, when the pathological changes have already progressed. OBJECTIVE The objective of this study is to evaluate the promising therapeutic effects of a natural compound, lycoramine, which has been shown to have therapeutic potential in several studies and to understand its mechanism of action on the molecular level via differential protein expression analyses. METHODS Lycoramine and galantamine, an FDA approved drug used in the treatment of mild to moderate AD, were administered to 12 month-old 5xFAD mice. Effects of the compounds were investigated by Morris water maze, immunohistochemistry and label- free differential protein expression analyses. RESULTS Here we demonstrated the reversal of cognitive decline via behavioral testing and the clearance of Aβ plaques. Proteomics analysis provided in-depth information on the statistically significant protein perturbations in the cortex, hippocampus and cerebellum sections to hypothesize the possible clearance mechanisms of the plaque formation and the molecular mechanism of the reversal of cognitive decline in a transgenic mouse model. Bioinformatics analyses showed altered molecular pathways that can be linked with the reversal of cognitive decline observed after lycoramine administration but not with galantamine. CONCLUSION Lycoramine shows therapeutic potential to halt and reverse cognitive decline at the late stages of disease progression, and holds great promise for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Karayel Basar
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Busra Gurel
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Julide Coskun
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Tomasz Mroczek
- Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
11
|
Wang D, Li L, Zhang Q, Liang Z, Huang L, He C, Wei Q. Combination of Electroacupuncture and Constraint-Induced Movement Therapy Enhances Functional Recovery After Ischemic Stroke in Rats. J Mol Neurosci 2021; 71:2116-2125. [PMID: 34101150 DOI: 10.1007/s12031-021-01863-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
Both electroacupuncture and constraint-induced movement therapy have been reported to produce therapeutic effects on the recovery of ischemic stroke. The combined use of these two therapies is not rare clinically, although its effectiveness is not yet clear. We aimed to evaluate the efficacy of the combination of electroacupuncture and constraint-induced movement therapy in ischemic stroke rats, and to explore the potential molecular mechanisms. Ischemic stroke rat models were established by middle cerebral artery occlusion. Then, the rats were assigned to receive one of the following interventions: sole electroacupuncture, sole constraint-induced movement therapy, the combination of both therapies, and no treatment. Functional recovery was assessed with the beam balance test and rotarod test. The infarct volume of the brain and the expression of the molecules Nogo-A, P75NTR, NGF, BDNF, and VEGF in the brain tissue were investigated. The results demonstrated that the combination of the two therapies significantly improved neurological functional recovery in ischemic stroke rats compared to each therapy alone (P < 0.01). We also observed a significant decrease in infarct volume in rats receiving the combined treatment. Nogo-A and P75NTR were downregulated and NGF, BDNF, and VEGF were upregulated in the combined treatment rats compared to the control rats. In conclusion, the combination of electroacupuncture and constraint-induced movement therapy enhanced functional recovery after ischemic stroke in rats, and it is a promising treatment strategy in the rehabilitation of stroke. The anti-Nogo-A effect of electroacupuncture may explain its good compatibility with CIMT in ischemic stroke rats.
Collapse
Affiliation(s)
- Dong Wang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Lijuan Li
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Qing Zhang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Zejun Liang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Liyi Huang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Chengqi He
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Quan Wei
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, 61004, Sichuan, People's Republic of China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Zhang XM, Sun Y, Zhou YL, Jiao ZM, Yang D, Ouyang YJ, Yu MY, Li JY, Li W, Wang D, Yue H, Fu J. Therapeutic effects of dental pulp stem cells on vascular dementia in rat models. Neural Regen Res 2021; 16:1645-1651. [PMID: 33433496 PMCID: PMC8323691 DOI: 10.4103/1673-5374.303042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells are a type of adult stem cells with strong proliferative ability and multi-differentiation potential. There are no studies on treatment of vascular dementia with dental pulp stem cells. In the present study, rat models of vascular dementia were established by two-vessel occlusion, and 30 days later, rats were injected with 2 × 107 dental pulp stem cells via the tail vein. At 70 days after vascular dementia induction, dental pulp stem cells had migrated to the brain tissue of rat vascular dementia models and differentiated into neuron-like cells. At the same time, doublecortin, neurofilament 200, and NeuN mRNA and protein expression levels in the brain tissue were increased, and glial fibrillary acidic protein mRNA and protein expression levels were decreased. Behavioral testing also revealed that dental pulp stem cell transplantation improved the cognitive function of rat vascular dementia models. These findings suggest that dental pulp stem cell transplantation is effective in treating vascular dementia possibly through a paracrine mechanism. The study was approved by the Animal Ethics Committee of Harbin Medical University (approval No. KY2017-132) in 2017.
Collapse
Affiliation(s)
- Xue-Mei Zhang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yang Sun
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ying-Lian Zhou
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhuo-Min Jiao
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dan Yang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuan-Jiao Ouyang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Mei-Yu Yu
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jin-Yue Li
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wei Li
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Duo Wang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hui Yue
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jin Fu
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
13
|
Bogolepova A, Vasenina E, Gomzyakova N, Gusev E, Dudchenko N, Emelin A, Zalutskaya N, Isaev R, Kotovskaya Y, Levin O, Litvinenko I, Lobzin V, Martynov M, Mkhitaryan E, Nikolay G, Palchikova E, Tkacheva O, Cherdak M, Chimagomedova A, Yakhno N. Clinical Guidelines for Cognitive Disorders in Elderly and Older Patients. Zh Nevrol Psikhiatr Im S S Korsakova 2021. [DOI: 10.17116/jnevro20211211036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Smith EE, Barber P, Field TS, Ganesh A, Hachinski V, Hogan DB, Lanctôt KL, Lindsay MP, Sharma M, Swartz RH, Ismail Z, Gauthier S, Black SE. Canadian Consensus Conference on Diagnosis and Treatment of Dementia (CCCDTD)5: Guidelines for management of vascular cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12056. [PMID: 33209971 PMCID: PMC7657196 DOI: 10.1002/trc2.12056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Vascular disease is a common cause of dementia, and often coexists with other brain pathologies such as Alzheimer's disease to cause mixed dementia. Many of the risk factors for vascular disease are treatable. Our objective was to review evidence for diagnosis and treatment of vascular cognitive impairment (VCI) to issue recommendations to clinicians. METHODS A subcommittee of the Canadian Consensus Conference on Diagnosis and Treatment of Dementia (CCCDTD) reviewed areas of emerging evidence. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system was used to assign the quality of the evidence and strength of the recommendations. RESULTS Using standardized diagnostic criteria, managing hypertension to conventional blood pressure targets, and reducing risk for stroke are strongly recommended. Intensive blood pressure lowering in middle-aged adults with vascular risk factors, using acetylsalicylic acid in persons with VCI and covert brain infarctions but not if only white matter lesions are present, and using cholinesterase inhibitors are weakly recommended. CONCLUSIONS The CCCDTD has provided evidence-based recommendations for diagnosis and management of VCI for use nationally in Canada, that may also be of use worldwide.
Collapse
Affiliation(s)
- Eric E. Smith
- Department of Clinical Neurosciences and Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Philip Barber
- Department of Clinical Neurosciences and Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Thalia S. Field
- Vancouver Stroke ProgramDjavad Mowafaghian Centre for Brain Health, Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Aravind Ganesh
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Vladimir Hachinski
- Department of Clinical Neurological SciencesWestern UniversityLondonOntarioCanada
| | - David B. Hogan
- Department of Medicine and Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Krista L. Lanctôt
- Department of Psychiatry and Hurvitz Brain Sciences Research ProgramSunnybrook Research Institute and Departments of Psychiatry and PharmacologyUniversity of TorontoTorontoOntarioCanada
| | | | - Mukul Sharma
- Department of Medicine (Neurology)Population Health Research InstituteMcMaster UniversityCanada
| | - Richard H. Swartz
- Department of Medicine (Neurology)Hurvitz Brain Sciences ProgramSunnybrook HSCUniversity of TorontoTorontoCanada
| | - Zahinoor Ismail
- Departments of PsychiatryClinical Neurosciences and Community Health SciencesHotchkiss Brain Institute and O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
| | - Serge Gauthier
- McGill Center for Studies in AgingMcGill UniversityMontrealCanada
| | - Sandra E. Black
- Department of Medicine (Neurology)Hurvitz Brain Sciences Research ProgramLC Campbell Cognitive Neurology UnitCanadian Partnership for Stroke RecoveryUniversity of TorontoTorontoCanada
| |
Collapse
|
15
|
Chebotareva AD, Levin OS. [Practical aspects of using donepezil in the treatment of dementia]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:137-143. [PMID: 33081459 DOI: 10.17116/jnevro2020120091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Donepezil is the most commonly used drug of the group of cholinesterase inhibitors. It is recommended for tretament of Alzheimer's disease. Donepezil is also used to treat dementia in Lewy body disease, Parkinson's disease with dementia, and vascular dementia. In Russia, donepezil is not used as often, which is facilitated by the concern of doctors about the possibility of serious side-effects. Clinical studies demonstrate the safety and good tolerability of donepezil. Our study included 62 patients with dementia due to various neurodegenerative diseases (Alzheimer's disease, Lewy body disease, Parkinson's disease with dementia). Thirty-seven patients (59.7%) started to receive donepezil. Side-effects, including bradycardia, hypertension, aggressive behavior, increased tremor, were observed in 7 patients (18.9%). There was no correlation between the development of side-effects and polymorphisms of the CYP2D6 and MDR1 genes.
Collapse
Affiliation(s)
- A D Chebotareva
- Russian Medicl Academy of Continuing Professional Education, Moscow, Russia
| | - O S Levin
- Russian Medicl Academy of Continuing Professional Education, Moscow, Russia
| |
Collapse
|
16
|
Simões-Pires EN, Ferreira ST, Linden R. Roles of glutamate receptors in a novel in vitro model of early, comorbid cerebrovascular, and Alzheimer's diseases. J Neurochem 2020; 156:539-552. [PMID: 32683713 DOI: 10.1111/jnc.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022]
Abstract
Systemic multimorbidity is highly prevalent in the elderly and, remarkably, coexisting neuropathological markers of Alzheimer's (AD) and cerebrovascular (CVD) diseases are found at autopsy in most brains of patients clinically diagnosed as AD. Little is known on neurodegeneration peculiar to comorbidities, especially at early stages when pathogenesis may propagate at subclinical levels. We developed a novel in vitro model of comorbid CVD/AD in organotypic hippocampal cultures, by combining oxygen-glucose deprivation (OGD) and exposure to amyloid-Aβ oligomers (AβOs), both applied at levels subtoxic to neurons when used in isolation. We focused on synaptic proteins and the roles of glutamate receptors, which have been implicated in many basic and clinical approaches to either CVD or AD. Subtoxic insults by OGD and AβOs synergized to reduce levels of synaptophysin (SYP) and PSD-95 without cell death, while effects of antagonists of either metabotropic or ionotropic glutamate receptors were distinct from reports in models of isolated CVD or AD. In particular, modulation of glutamate receptors differentially impacted SYP and PSD-95, and antagonists of a single receptor subtype had distinct effects when either isolated or combined. Our findings highlight the complexity of CVD/AD comorbidity, help understand variable responses to glutamate receptor antagonists in patients diagnosed with AD and may contribute to future development of therapeutics based on investigation of the pattern of progressive comorbidity.
Collapse
Affiliation(s)
| | - Sergio T Ferreira
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto de Bioquímica Médica Leopoldo de Meis, UFRJ, Rio de Janeiro, Brazil
| | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Matsunaga S, Fujishiro H, Takechi H. Efficacy and Safety of Cholinesterase Inhibitors for Mild Cognitive Impairment:A Systematic Review and Meta-Analysis. J Alzheimers Dis 2020; 71:513-523. [PMID: 31424411 DOI: 10.3233/jad-190546] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The clinical benefit of cholinesterase inhibitors (ChEIs) for mild cognitive impairment (MCI) remains inconclusive. OBJECTIVE We performed a systematic review and meta-analysis of the efficacy/safety of ChEIs on subjects with MCI. METHODS We included randomized controlled trials (RCTs) of ChEIs in subjects with MCI, using cognitive function scores as a primary outcome measure. RESULTS Fourteen RCTs (six using donepezil, four using galantamine, and four using rivastigmine) with 5,278 subjects were included. We found no significant difference in cognitive function scores between the ChEIs and placebo groups [standardized mean difference (SMD) = -0.06, p = 0.38, I2 = 76% ]. However, in the secondary outcomes, ChEIs were associated with a lower incidence of progression to dementia compared with placebo (risk ratio = 0.76, the number needed to treat = 20). For safety outcomes, ChEIs were associated with a lower prevalence of fall than placebo. On the other hand, compared with placebo, ChEIs were associated with a higher incidence of discontinuation due to all causes, discontinuation due to adverse events, at least one adverse event, abnormal dreams, diarrhea, dizziness, headache, insomnia, loose stools, muscle cramps, nausea, vomiting, and weight loss. CONCLUSIONS Although ChEIs have a slight efficacy in the treatment of MCI, there are many safety issues. Therefore, ChEIs are difficult to recommend for MCI. However, the efficacy and safety of ChEIs on MCI with a biomarker-based diagnosis is unclear. Further RCTs are needed to confirm the efficacy and safety of ChEIs when used for individual neuropathological classifications of MCI.
Collapse
Affiliation(s)
- Shinji Matsunaga
- Department of Geriatrics and Cognitive Disorders, Fujita Health University School of Medicine, Kutsukake, Toyoake, Aichi, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Kawasaki Memorial Hospital, Miyamae, Kawasaki, Kanagawa, Japan
| | - Hajime Takechi
- Department of Geriatrics and Cognitive Disorders, Fujita Health University School of Medicine, Kutsukake, Toyoake, Aichi, Japan
| |
Collapse
|
18
|
Cacabelos R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer's disease. Expert Opin Drug Metab Toxicol 2020; 16:673-701. [PMID: 32520597 DOI: 10.1080/17425255.2020.1779700] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cholinergic dysfunction, demonstrated in the late 1970s and early 1980s, led to the introduction of acetylcholinesterase inhibitors (AChEIs) in 1993 (Tacrine) to enhance cholinergic neurotransmission as the first line of treatment against Alzheimer's disease (AD). The new generation of AChEIs, represented by Donepezil (1996), Galantamine (2001) and Rivastigmine (2002), is the only treatment for AD to date, together with Memantine (2003). AChEIs are not devoid of side-effects and their cost-effectiveness is limited. An option to optimize the correct use of AChEIs is the implementation of pharmacogenetics (PGx) in the clinical practice. AREAS COVERED (i) The cholinergic system in AD, (ii) principles of AD PGx, (iii) PGx of Donepezil, Galantamine, Rivastigmine, Huperzine and other treatments, and (iv) practical recommendations. EXPERT OPINION The most relevant genes influencing AChEI efficacy and safety are APOE and CYPs. APOE-4 carriers are the worst responders to AChEIs. With the exception of Rivastigmine (UGT2B7, BCHE-K), the other AChEIs are primarily metabolized via CYP2D6, CYP3A4, and UGT enzymes, with involvement of ABC transporters and cholinergic genes (CHAT, ACHE, BCHE, SLC5A7, SLC18A3, CHRNA7) in most ethnic groups. Defective variants may affect the clinical response to AChEIs. PGx geno-phenotyping is highly recommended prior to treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine , Bergondo, Corunna, Spain
| |
Collapse
|
19
|
Management of Cognitive Impairment After Stroke. Curr Treat Options Neurol 2020. [DOI: 10.1007/s11940-020-00627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Zhu NW, Yin XL, Lin R, Fan XL, Chen SJ, Zhu YM, Zhao XZ. Possible mechanisms of lycopene amelioration of learning and memory impairment in rats with vascular dementia. Neural Regen Res 2020; 15:332-341. [PMID: 31552907 PMCID: PMC6905346 DOI: 10.4103/1673-5374.265565] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is involved in the pathogenesis of vascular dementia. Studies have shown that lycopene can significantly inhibit oxidative stress; therefore, we hypothesized that lycopene can reduce the level of oxidative stress in vascular dementia. A vascular dementia model was established by permanent bilateral ligation of common carotid arteries. The dosage groups were treated with lycopene (50, 100 and 200 mg/kg) every other day for 2 months. Rats without bilateral carotid artery ligation were prepared as a sham group. To test the ability of learning and memory, the Morris water maze was used to detect the average escape latency and the change of search strategy. Hematoxylin-eosin staining was used to observe changes of hippocampal neurons. The levels of oxidative stress factors, superoxide dismutase and malondialdehyde, were measured in the hippocampus by biochemical detection. The levels of reactive oxygen species in the hippocampus were observed by dihydroethidium staining. The distribution and expression of oxidative stress related protein, neuron-restrictive silencer factor, in hippocampal neurons were detected by immunofluorescence histochemistry and western blot assays. After 2 months of drug administration, (1) in the model group, the average escape latency was longer than that of the sham group, and the proportion of straight and tend tactics was lower than that of the sham group, and the hippocampal neurons were irregularly arranged and the cytoplasm was hyperchromatic. (2) The levels of reactive oxygen species and malondialdehyde in the hippocampus of the model group rats were increased, and the activity of superoxide dismutase was decreased. (3) Lycopene (50, 100 and 200 mg/kg) intervention improved the above changes, and the lycopene 100 mg/kg group showed the most significant improvement effect. (4) Neuron-restrictive silencer factor expression in the hippocampus was lower in the sham group and the lycopene 100 mg/kg group than in the model group. (5) The above data indicate that lycopene 100 mg/kg could protect against the learning-memory ability impairment of vascular dementia rats. The protective mechanism was achieved by inhibiting oxidative stress in the hippocampus. The experiment was approved by the Animal Ethics Committee of Fujian Medical University, China (approval No. 2014-025) in June 2014.
Collapse
Affiliation(s)
- Ning-Wei Zhu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province; Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang Province, China
| | - Xiao-Lan Yin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ren Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiao-Lan Fan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shi-Jie Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yuan-Ming Zhu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiao-Zhen Zhao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
21
|
Chebotareva AD, Dudchenko NG. [The use of donepezil in gait disorders in eldery patients with dementia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:56-59. [PMID: 31825391 DOI: 10.17116/jnevro201911909256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Donepezil is the most commonly used cholinesterase inhibitor. The indication for its use is Alzheimer's disease. A number of clinical studies have shown its effectiveness in vascular dementia, dementia with Lewy bodies, Parkinson's disease with dementia, dementia due to traumatic brain injury. It is shown that dementia is a risk factor for falls, and standard measures to prevent falls in the elderly are ineffective in patients with cognitive impairment. This article provides a review of publications on the influence of donepezil on gait and balance. Most authors agree that donepezil is able to improve some parameters of gait, such as gait velocity and stride time variability, which can increase stability and reduce the risk of falls. The effect of donepezil on motor function is small, but its use may be particularly valuable if other approaches to treatment of gait disorders in patients with cognitive impairment are ineffective.
Collapse
Affiliation(s)
- A D Chebotareva
- Russian Academy for Continuing Professional Education, Moscow, Russia
| | - N G Dudchenko
- Russian Academy for Continuing Professional Education, Moscow, Russia
| |
Collapse
|