1
|
Bechard E, Arel E, Bride J, Louradour J, Bussy X, Elloumi A, Vigor C, Soule P, Oger C, Galano JM, Durand T, Le Guennec JY, Moha-Ou-Maati H, Demion M. Activation of hTREK-1 by polyunsaturated fatty acids involves direct interaction. Sci Rep 2024; 14:15244. [PMID: 38956407 PMCID: PMC11220079 DOI: 10.1038/s41598-024-66192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/28/2024] [Indexed: 07/04/2024] Open
Abstract
TREK-1 is a mechanosensitive channel activated by polyunsaturated fatty acids (PUFAs). Its activation is supposed to be linked to changes in membrane tension following PUFAs insertion. Here, we compared the effect of 11 fatty acids and ML402 on TREK-1 channel activation using the whole cell and the inside-out configurations of the patch-clamp technique. Firstly, TREK-1 activation by PUFAs is variable and related to the variable constitutive activity of TREK-1. We observed no correlation between TREK-1 activation and acyl chain length or number of double bonds suggesting that the bilayer-couple hypothesis cannot explain by itself the activation of TREK-1 by PUFAs. The membrane fluidity measurement is not modified by PUFAs at 10 µM. The spectral shift analysis in TREK-1-enriched microsomes indicates a KD,TREK1 at 44 µM of C22:6 n-3. PUFAs display the same activation and reversible kinetics than the direct activator ML402 and activate TREK-1 in both whole-cell and inside-out configurations of patch-clamp suggesting that the binding site of PUFAs is accessible from both sides of the membrane, as for ML402. Finally, we proposed a two steps mechanism: first, insertion into the membrane, with no fluidity or curvature modifications at 10 µM, and then interaction with TREK-1 channel to open it.
Collapse
Affiliation(s)
- Emilie Bechard
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Elodie Arel
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Jamie Bride
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Julien Louradour
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Xavier Bussy
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Anis Elloumi
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | - Claire Vigor
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | | | - Camille Oger
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | - Thierry Durand
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | - Jean-Yves Le Guennec
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Hamid Moha-Ou-Maati
- IGF, Université de Montpellier, UMR CNRS 5203, Inserm 1191, Montpellier, France
- INM, Inserm U1298, Montpellier, France
| | - Marie Demion
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France.
| |
Collapse
|
2
|
Younes S, Mourad N, Salla M, Rahal M, Hammoudi Halat D. Potassium Ion Channels in Glioma: From Basic Knowledge into Therapeutic Applications. MEMBRANES 2023; 13:434. [PMID: 37103862 PMCID: PMC10144598 DOI: 10.3390/membranes13040434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Ion channels, specifically those controlling the flux of potassium across cell membranes, have recently been shown to exhibit an important role in the pathophysiology of glioma, the most common primary central nervous system tumor with a poor prognosis. Potassium channels are grouped into four subfamilies differing by their domain structure, gating mechanisms, and functions. Pertinent literature indicates the vital functions of potassium channels in many aspects of glioma carcinogenesis, including proliferation, migration, and apoptosis. The dysfunction of potassium channels can result in pro-proliferative signals that are highly related to calcium signaling as well. Moreover, this dysfunction can feed into migration and metastasis, most likely by increasing the osmotic pressure of cells allowing the cells to initiate the "escape" and "invasion" of capillaries. Reducing the expression or channel blockage has shown efficacy in reducing the proliferation and infiltration of glioma cells as well as inducing apoptosis, priming several approaches to target potassium channels in gliomas pharmacologically. This review summarizes the current knowledge on potassium channels, their contribution to oncogenic transformations in glioma, and the existing perspectives on utilizing them as potential targets for therapy.
Collapse
Affiliation(s)
- Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
| | - Nisreen Mourad
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Mohamed Salla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa 146404, Lebanon;
| | - Mohamad Rahal
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
- Academic Quality Department, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
3
|
Activity of TREK-2-like Channels in the Pyramidal Neurons of Rat Medial Prefrontal Cortex Depends on Cytoplasmic Calcium. BIOLOGY 2021; 10:biology10111119. [PMID: 34827112 PMCID: PMC8614805 DOI: 10.3390/biology10111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary The pyramidal neurons of rat prefrontal cortex express potassium channels identified as a non-canonical splice variant of the TREK-2 channel. The main function of TREK channels is to regulate the resting membrane potential. We showed that cytoplasmic Ca2+ upregulates the activity of TREK-2-like channels. Previous studies have indicated that the activation of TREK-2 channels is mediated by PI(4,5)P2, a polyanionic lipid in the inner leaflet of the plasma membrane. While TREK channels are believed to not be regulated by calcium, our work shows otherwise. We propose a model in which calcium ions enable the formation of PI(4,5)P2 nanoclusters, which stabilize active conformation of the channel. Abstract TREK-2-like channels in the pyramidal neurons of rat prefrontal cortex are characterized by a wide range of spontaneous activity—from very low to very high—independent of the membrane potential and the stimuli that are known to activate TREK-2 channels, such as temperature or membrane stretching. The aim of this study was to discover what factors are involved in high levels of TREK-2-like channel activity in these cells. Our research focused on the PI(4,5)P2-dependent mechanism of channel activity. Single-channel patch clamp recordings were performed on freshly dissociated pyramidal neurons of rat prefrontal cortexes in both the cell-attached and inside-out configurations. To evaluate the role of endogenous stimulants, the activity of the channels was recorded in the presence of a PI(4,5)P2 analogue (PI(4,5)P2DiC8) and Ca2+. Our research revealed that calcium ions are an important factor affecting TREK-2-like channel activity and kinetics. The observation that calcium participates in the activation of TREK-2-like channels is a new finding. We showed that PI(4,5)P2-dependent TREK-2 activity occurs when the conditions for PI(4,5)P2/Ca2+ nanocluster formation are met. We present a possible model explaining the mechanism of calcium action.
Collapse
|
4
|
Rueda-Ruzafa L, Herrera-Pérez S, Campos-Ríos A, Lamas JA. Are TREK Channels Temperature Sensors? Front Cell Neurosci 2021; 15:744702. [PMID: 34690704 PMCID: PMC8526543 DOI: 10.3389/fncel.2021.744702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Internal human body normal temperature fluctuates between 36.5 and 37.5°C and it is generally measured in the oral cavity. Interestingly, most electrophysiological studies on the functioning of ion channels and their role in neuronal behavior are carried out at room temperature, which usually oscillates between 22 and 24°C, even when thermosensitive channels are studied. We very often forget that if the core of the body reached that temperature, the probability of death from cardiorespiratory arrest would be extremely high. Does this mean that we are studying ion channels in dying neurons? Thousands of electrophysiological experiments carried out at these low temperatures suggest that most neurons tolerate this aggression quite well, at least for the duration of the experiments. This also seems to happen with ion channels, although studies at different temperatures indicate large changes in both, neuron and channel behavior. It is known that many chemical, physical and therefore physiological processes, depend to a great extent on body temperature. Temperature clearly affects the kinetics of numerous events such as chemical reactions or conformational changes in proteins but, what if these proteins constitute ion channels and these channels are specifically designed to detect changes in temperature? In this review, we discuss the importance of the potassium channels of the TREK subfamily, belonging to the recently discovered family of two-pore domain channels, in the transduction of thermal sensitivity in different cell types.
Collapse
Affiliation(s)
- Lola Rueda-Ruzafa
- CINBIO, Laboratory of Neuroscience, University of Vigo, Vigo, Spain.,Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - Salvador Herrera-Pérez
- CINBIO, Laboratory of Neuroscience, University of Vigo, Vigo, Spain.,Grupo de Neurofisiología Experimental y Circuitos Neuronales, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Ana Campos-Ríos
- CINBIO, Laboratory of Neuroscience, University of Vigo, Vigo, Spain.,Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - J A Lamas
- CINBIO, Laboratory of Neuroscience, University of Vigo, Vigo, Spain.,Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| |
Collapse
|
5
|
Li XL, Tang CY, Wang S, Zhao M, Wang XF, Li TF, Qi XL, Luan GM, Guan YG. Regulation of TWIK-related K + channel 1 in the anterior hippocampus of patients with temporal lobe epilepsy with comorbid depression. Epilepsy Behav 2021; 121:108045. [PMID: 34116339 DOI: 10.1016/j.yebeh.2021.108045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/11/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Epilepsy with comorbid depression has recently attracted increasing attention. Temporal lobe epilepsy (TLE) may represent an increased risk of developing depression, especially if the seizures do not generalize. The two-pore domain potassium channel-TWIK-related K+ channel (TREK-1) plays important roles in both epilepsy and depression. However, the changes in its expression in patients with epilepsy with comorbid depression remain unclear. In the present study, we analyzed depressive symptoms using neuropsychiatric scales in forty-two patients with drug-resistant TLE, who also underwent EEG in waking and sleeping states, as well as 3.0 T brain MRI. We tested for TREK-1 positive neurons and microglial cells in the anterior hippocampi of patients with drug-resistant TLE with and without comorbid depression (n=5/group). Approximately 31% of patients with TLE had comorbid depression (13/42). Meanwhile, the patients who had hippocampal sclerosis had much higher scores on the depression rating scale. The results indicated the contribution of hippocampal sclerosis to the development of depression. Immunostaining of TREK-1 channels was observed in neurons and glia in the anterior hippocampus. Increased immunoreactivity of TREK-1 neurons was observed in the hippocampi of patients with TLE with comorbid depression compared with nondepressed patients with TLE. TREK-1 was expressed in almost all microglia. Curiously, more activated TREK-1-positive microglia were observed in patients with TLE with depression than in those without depression. The results suggested that a change in TREK-1 immunoreactivity was involved, at least partly, in the development of depression as a comorbidity of TLE. Imbalance of the TREK-1 channel may be a potential target for the treatment of patients with epilepsy with comorbid depression.
Collapse
Affiliation(s)
- Xiao-Li Li
- Department of Neurology, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China; Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chong-Yang Tang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Shu Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Meng Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiong-Fei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tian-Fu Li
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China; Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xue-Ling Qi
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guo-Ming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China; Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Yu-Guang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China; Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Singh S, Agarwal P, Ravichandiran V. Two-Pore Domain Potassium Channel in Neurological Disorders. J Membr Biol 2021; 254:367-380. [PMID: 34169340 DOI: 10.1007/s00232-021-00189-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023]
Abstract
K2P channel is the leaky potassium channel that is critical to keep up the negative resting membrane potential for legitimate electrical conductivity of the excitable tissues. Recently, many substances and medication elements are discovered that could either straightforwardly or in a roundabout way influence the 15 distinctive K+ ion channels including TWIK, TREK, TASK, TALK, THIK, and TRESK. Opening and shutting of these channels or any adjustment in their conduct is thought to alter the pathophysiological condition of CNS. There is no document available till now to explain in detail about the molecular mechanism of agents acting on K2P channel. Accordingly, in this review we cover the current research and mechanism of action of these channels, we have also tried to mention the detailed effect of drugs and how the channel behavior changes by focusing on recent advances regarding activation and modulation of ion channels.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India.
| | - Punita Agarwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| |
Collapse
|
7
|
Aghdash SN. Herbal Medicine in the Treatment of Epilepsy. Curr Drug Targets 2021; 22:356-367. [PMID: 33023444 DOI: 10.2174/1389450121999201001152221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is one of the most common disorders of the central nervous system. Although epilepsy is common worldwide, approximately 80% of epileptic patients live in the developing countries or those with low-middle income. Up until the second decade of the 20th century, epilepsy was treated mostly by traditional remedies. Today, antiepileptic drugs are used as a general treatment instead to prevent and control epileptic seizures. However, patient access to these drugs is hindered due to the healthcare systems of their countries and a number of other reasons, such as cultural, socio-demographic, and financial poverty. In addition, approximately 30-40%of epileptic patients suffer from refractory epilepsy, additionally, AEDs have adverse side-effects that can lead to treatment failure or reduce the patient's quality of life. Despite recent advances in the treatment of epilepsy, there is still a need for improving medical treatment with a particular focus on efficacy, safety, and accessibility. Since herbal medicines have been used for many centuries around the world for treating epilepsy, it is, therefore, plausible that a rigorous study on herbal medicine and phytochemical components within plants of various species and origin may lead to the discovery of novel AEDs. Nowadays, many medicinal plants used in different cultures and regions of the world have been identified. Most phytochemical components of these plants have been identified and, in some cases, their targets located. Therefore, it is possible that new, effective, and accessible anticonvulsants drugs can be obtained from a medicinal plant.
Collapse
Affiliation(s)
- Simin Namvar Aghdash
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
8
|
Maqoud F, Scala R, Hoxha M, Zappacosta B, Tricarico D. ATP-sensitive potassium channel subunits in the neuroinflammation: novel drug targets in neurodegenerative disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:130-149. [PMID: 33463481 DOI: 10.2174/1871527320666210119095626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Arachidonic acids and its metabolites modulate plenty of ligand-gated, voltage-dependent ion channels, and metabolically regulated potassium channels including ATP-sensitive potassium channels (KATP). KATP channels are hetero-multimeric complexes of sulfonylureas receptors (SUR1, SUR2A or SUR2B) and the pore-forming subunits (Kir6.1 and Kir6.2) likewise expressed in the pre-post synapsis of neurons and inflammatory cells, thereby affecting their proliferation and activity. KATP channels are involved in amyloid-β (Aβ)-induced pathology, therefore emerging as therapeutic targets against Alzheimer's and related diseases. The modulation of these channels can represent an innovative strategy for the treatment of neurodegenerative disorders; nevertheless, the currently available drugs are not selective for brain KATP channels and show contrasting effects. This phenomenon can be a consequence of the multiple physiological roles of the different varieties of KATP channels. Openings of cardiac and muscular KATP channel subunits, is protective against caspase-dependent atrophy in these tissues and some neurodegenerative disorders, whereas in some neuroinflammatory diseases benefits can be obtained through the inhibition of neuronal KATP channel subunits. For example, glibenclamide exerts an anti-inflammatory effect in respiratory, digestive, urological, and central nervous system (CNS) diseases, as well as in ischemia-reperfusion injury associated with abnormal SUR1-Trpm4/TNF-α or SUR1-Trpm4/ Nos2/ROS signaling. Despite this strategy is promising, glibenclamide may have limited clinical efficacy due to its unselective blocking action of SUR2A/B subunits also expressed in cardiovascular apparatus with pro-arrhythmic effects and SUR1 expressed in pancreatic beta cells with hypoglycemic risk. Alternatively, neuronal selective dual modulators showing agonist/antagonist actions on KATP channels can be an option.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Rosa Scala
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Domenico Tricarico
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| |
Collapse
|
9
|
Guo X, Rao Y, Mao R, Cui L, Fang Y. Common cellular and molecular mechanisms and interactions between microglial activation and aberrant neuroplasticity in depression. Neuropharmacology 2020; 181:108336. [DOI: 10.1016/j.neuropharm.2020.108336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
|
10
|
Mecklenburg J, Zou Y, Wangzhou A, Garcia D, Lai Z, Tumanov AV, Dussor G, Price TJ, Akopian AN. Transcriptomic sex differences in sensory neuronal populations of mice. Sci Rep 2020; 10:15278. [PMID: 32943709 PMCID: PMC7499251 DOI: 10.1038/s41598-020-72285-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Many chronic pain conditions show sex differences in their epidemiology. This could be attributed to sex-dependent differential expression of genes (DEGs) involved in nociceptive pathways, including sensory neurons. This study aimed to identify sex-dependent DEGs in estrous female versus male sensory neurons, which were prepared by using different approaches and ganglion types. RNA-seq on non-purified sensory neuronal preparations, such as whole dorsal root ganglion (DRG) and hindpaw tissues, revealed only a few sex-dependent DEGs. Sensory neuron purification increased numbers of sex-dependent DEGs. These DEG sets were substantially influenced by preparation approaches and ganglion types [DRG vs trigeminal ganglia (TG)]. Percoll-gradient enriched DRG and TG neuronal fractions produced distinct sex-dependent DEG groups. We next isolated a subset of sensory neurons by sorting DRG neurons back-labeled from paw and thigh muscle. These neurons have a unique sex-dependent DEG set, yet there is similarity in biological processes linked to these different groups of sex-dependent DEGs. Female-predominant DEGs in sensory neurons relate to inflammatory, synaptic transmission and extracellular matrix reorganization processes that could exacerbate neuro-inflammation severity, especially in TG. Male-selective DEGs were linked to oxidative phosphorylation and protein/molecule metabolism and production. Our findings catalog preparation-dependent sex differences in neuronal gene expressions in sensory ganglia.
Collapse
Affiliation(s)
- Jennifer Mecklenburg
- Department of Endodontics, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas School of Behavioral and Brain Sciences, Richardson, TX, 75080, USA
| | - Dawn Garcia
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- Departments of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas School of Behavioral and Brain Sciences, Richardson, TX, 75080, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas School of Behavioral and Brain Sciences, Richardson, TX, 75080, USA
| | - Armen N Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA.
- Department of Pharmacology, The School of Dentistry, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
11
|
Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020; 9:cells9091956. [PMID: 32854241 PMCID: PMC7565333 DOI: 10.3390/cells9091956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility-a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.
Collapse
|
12
|
Ma R, Lewis A. Spadin Selectively Antagonizes Arachidonic Acid Activation of TREK-1 Channels. Front Pharmacol 2020; 11:434. [PMID: 32317978 PMCID: PMC7154116 DOI: 10.3389/fphar.2020.00434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
TREK-1 channel activity is a critical regulator of neuronal, cardiac, and smooth muscle physiology and pathology. The antidepressant peptide, spadin, has been proposed to be a TREK-1-specific blocker. Here we sought to examine the mechanism of action underlying spadin inhibition of TREK-1 channels. Heterologous expression in Xenopus laevis oocytes and electrophysiological analysis using two-electrode voltage clamp in standard bath solutions was used to characterize the pharmacological profile of wild-type and mutant murine TREK-1 and TREK-2 channels using previously established human K2P activators; arachidonic acid (AA), cis-4,7,10,13,16,19-docosahexaenoic acid (DHA), BL-1249, and cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC) and inhibitors; spadin and barium (Ba2+). Mouse TREK-1 and TREK-2 channel currents were both significantly increased by AA, BL-1249, and CDC, similar to their human homologs. Under basal conditions, both TREK-1 and TREK-2 currents were insensitive to application of spadin, but could be blocked by Ba2+. Spadin did not significantly inhibit either TREK-1 or TREK-2 currents either chemically activated by AA, BL-1249, or CDC, or structurally activated via a gating mutation. However, pre-exposure to spadin significantly perturbed the subsequent activation of TREK-1 currents by AA, but not TREK-2. Furthermore, spadin was unable to prevent activation of TREK-1 by BL-1249, CDC, or the related bioactive lipid, DHA. Spadin specifically antagonizes the activation of TREK-1 channels by AA, likely via an allosteric mechanism. Lack of intrinsic activity may explain the absence of clinical side effects during antidepressant therapy.
Collapse
Affiliation(s)
- Ruolin Ma
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Anthony Lewis
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
13
|
Paschou M, Maier L, Papazafiri P, Selescu T, Dedos SG, Babes A, Doxakis E. Neuronal microRNAs modulate TREK two-pore domain K + channel expression and current density. RNA Biol 2020; 17:651-662. [PMID: 31994436 DOI: 10.1080/15476286.2020.1722450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The TREK family of leak potassium channels has been found to play critical roles in nociception, sensitivity to general anaesthetics, neuroprotection, and memory. The three members of the family, TREK1, TREK2 and TRAAK establish the resting potential and modify the duration, frequency and amplitude of action potentials. Despite their apparent importance, the repertoire of regulatory interactions utilized by cells to control their expression is poorly understood. Herein, the contribution of miRNAs in the regulation of their post-transcriptional gene expression has been examined. Using different assays, miR-124 and to a lesser extent miR-128 and miR-183 were found to reduce TREK1 and TREK2 levels through specific binding to their 3'UTRs. In contrast, miR-9 which was predicted to bind to TRAAK 3'UTR, did not alter its expression. Expression of miR-124, miR-128 and miR-183 was found to mirror that of Trek1 and Trek2 mRNAs during brain development. Moreover, application of proinflammatory mediators in dorsal root ganglion (DRG) neurons revealed an inverse correlation between miR-124 and Trek1 and Trek2 mRNA expression. Voltage clamp recordings of TREK2-mediated currents showed that miR-124 reduced the sensitivity of TREK2-expressing cells to non-aversive warmth stimulation. Overall, these findings reveal a significant regulatory mechanism by which TREK1 and TREK2 expression and hence activity are controlled in neurons and uncover new druggable targets for analgesia and neuroprotection.Abbreviations: microRNA: miRNA; UTR: untranslated region; K2p channels: two-pore domain K+channels; DRG: dorsal root ganglion; CNS: central nervous system; FBS: fetal bovine serum; TuD: Tough Decoy; TREK: tandem P-domain weak inward rectifying K+ (TWIK)-related K+ channel 1; TRAAK: TWIK-related arachidonic acid K+.
Collapse
Affiliation(s)
- Maria Paschou
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Larisa Maier
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Panagiota Papazafiri
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Tudor Selescu
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Skarlatos G Dedos
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandru Babes
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Epaminondas Doxakis
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
14
|
Temperature elevation in epileptogenic foci exacerbates epileptic discharge through TRPV4 activation. J Transl Med 2020; 100:274-284. [PMID: 31641226 DOI: 10.1038/s41374-019-0335-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
Physiological brain temperature is an important determinant of brain function, and it is well established that changes in brain temperature dynamically influence hippocampal neuronal activity. We previously demonstrated that the thermosensor TRPV4 is activated at physiological brain temperature in hippocampal neurons thereby controlling neuronal excitability in vitro. Here, we examined whether TRPV4 regulates neuronal excitability through its activation by brain temperature in vivo. We locally cooled the hippocampus using our novel electrical device and demonstrated constitutive TRPV4 activation in normal mouse brain. We generated a model of partial epilepsy by utilizing kindling stimuli in the ventral hippocampus of wild type (WT) or TRPV4-deficient (TRPV4KO) mice and obtained electroencephalograms (EEG). The frequencies of epileptic EEG in WT mice were significantly larger than those in TRPV4KO mice. These results indicate that TRPV4 activation is involved in disease progression of epilepsy. We expected that disease progression would enhance hyperexcitability and lead to hyperthermia in the epileptogenic foci. To confirm this hypothesis, we developed a new device to measure exact brain temperature only in a restricted local area. From the recording results by the new device, we found that the brain temperatures in epileptogenic zones were dramatically elevated compared with normal regions. Furthermore, we demonstrated that the temperature elevation was critical for disease progression. Based on these results, we speculate that brain cooling treatment at epileptogenic foci would effectively suppress epileptic discharges through inhibition of TRPV4. Notably, the cooling treatment drastically suppressed neuronal discharges dependent on the inactivation of TRPV4.
Collapse
|
15
|
Rivas-Ramírez P, Reboreda A, Rueda-Ruzafa L, Herrera-Pérez S, Lamas JA. PIP 2 Mediated Inhibition of TREK Potassium Currents by Bradykinin in Mouse Sympathetic Neurons. Int J Mol Sci 2020; 21:ijms21020389. [PMID: 31936257 PMCID: PMC7014146 DOI: 10.3390/ijms21020389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022] Open
Abstract
Bradykinin (BK), a hormone inducing pain and inflammation, is known to inhibit potassium M-currents (IM) and to increase the excitability of the superior cervical ganglion (SCG) neurons by activating the Ca2+-calmodulin pathway. M-current is also reduced by muscarinic agonists through the depletion of membrane phosphatidylinositol 4,5-biphosphate (PIP2). Similarly, the activation of muscarinic receptors inhibits the current through two-pore domain potassium channels (K2P) of the “Tandem of pore-domains in a Weakly Inward rectifying K+ channel (TWIK)-related channels” (TREK) subfamily by reducing PIP2 in mouse SCG neurons (mSCG). The aim of this work was to test and characterize the modulation of TREK channels by bradykinin. We used the perforated-patch technique to investigate riluzole (RIL) activated currents in voltage- and current-clamp experiments. RIL is a drug used in the palliative treatment of amyotrophic lateral sclerosis and, in addition to blocking voltage-dependent sodium channels, it also selectively activates the K2P channels of the TREK subfamily. A cell-attached patch-clamp was also used to investigate TREK-2 single channel currents. We report here that BK reduces spike frequency adaptation (SFA), inhibits the riluzole-activated current (IRIL), which flows mainly through TREK-2 channels, by about 45%, and reduces the open probability of identified single TREK-2 channels in cultured mSCG cells. The effect of BK on IRIL was precluded by the bradykinin receptor (B2R) antagonist HOE-140 (d-Arg-[Hyp3, Thi5, d-Tic7, Oic8]BK) but also by diC8PIP2 which prevents PIP2 depletion when phospholipase C (PLC) is activated. On the contrary, antagonizing inositol triphosphate receptors (IP3R) using 2-aminoethoxydiphenylborane (2-APB) or inhibiting protein kinase C (PKC) with bisindolylmaleimide did not affect the inhibition of IRIL by BK. In conclusion, bradykinin inhibits TREK-2 channels through the activation of B2Rs resulting in PIP2 depletion, much like we have demonstrated for muscarinic agonists. This mechanism implies that TREK channels must be relevant for the capture of information about pain and visceral inflammation.
Collapse
|
16
|
Tan CY, Wang YP, Han YY, Lu BH, Ji W, Zhu LC, Wang Y, Shi WY, Shan LY, Zhang L, Ma KT, Li L, Si JQ. Expression and effect of sodium-potassium-chloride cotransporter on dorsal root ganglion neurons in a rat model of chronic constriction injury. Neural Regen Res 2020; 15:912-921. [PMID: 31719257 PMCID: PMC6990784 DOI: 10.4103/1673-5374.268904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sodium-potassium-chloride cotransporter 1 (NKCC1) and potassium-chloride cotransporter 2 (KCC2) are associated with the transmission of peripheral pain. We investigated whether the increase of NKCC1 and KCC2 is associated with peripheral pain transmission in dorsal root ganglion neurons. To this aim, rats with persistent hyperalgesia were randomly divided into four groups. Rats in the control group received no treatment, and the rat sciatic nerve was only exposed in the sham group. Rats in the chronic constriction injury group were established into chronic constriction injury models by ligating sciatic nerve and rats were given bumetanide, an inhibitor of NKCC1, based on chronic constriction injury modeling in the chronic constriction injury + bumetanide group. In the experiment measuring thermal withdrawal latency, bumetanide (15 mg/kg) was intravenously administered. In the patch clamp experiment, bumetanide (10 µg/µL) and acutely isolated dorsal root ganglion neurons (on day 14) were incubated for 1 hour, or bumetanide (5 µg/µL) was intrathecally injected. The Hargreaves test was conducted to detect changes in thermal hyperalgesia in rats. We found that the thermal withdrawal latency of rats was significantly decreased on days 7, 14, and 21 after model establishment. After intravenous injection of bumetanide, the reduction in thermal retraction latency caused by model establishment was significantly inhibited. Immunohistochemistry and western blot assay results revealed that the immune response and protein expression of NKCC1 in dorsal root ganglion neurons of the chronic constriction injury group increased significantly on days 7, 14, and 21 after model establishment. No immune response or protein expression of KCC2 was observed in dorsal root ganglion neurons before and after model establishment. The Cl– (chloride ion) fluorescent probe technique was used to evaluate the change of Cl– concentration in dorsal root ganglion neurons of chronic constriction injury model rats. We found that the relative optical density of N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (a Cl– fluorescent probe whose fluorescence intensity decreases as Cl– concentration increases) in the dorsal root ganglion neurons of the chronic constriction injury group was significantly decreased on days 7 and 14 after model establishment. The whole-cell patch clamp technique revealed that the resting potential and action potential frequency of dorsal root ganglion neurons increased, and the threshold and rheobase of action potentials decreased in the chronic constriction injury group on day 14 after model establishment. After bumetanide administration, the above indicators were significantly suppressed. These results confirm that CCI can induce abnormal overexpression of NKCC1, thereby increasing the Cl– concentration in dorsal root ganglion neurons; this then enhances the excitability of dorsal root ganglion neurons and ultimately promotes hyperalgesia and allodynia. In addition, bumetanide can achieve analgesic effects. All experiments were approved by the Institutional Ethics Review Board at the First Affiliated Hospital, College of Medicine, Shihezi University, China on February 22, 2017 (approval No. A2017-169-01).
Collapse
Affiliation(s)
- Chao-Yang Tan
- Department of Physiology, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang Province; Department of Health, Karamay Army Division, Chinese People's Liberation Army, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Yan-Ping Wang
- Department of Physiology; Department of Nursing, Medical College of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Yuan-Yuan Han
- Department of Physiology, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Department of Clinical Medicine, Karamay College of Xinjiang Medical University, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Bi-Han Lu
- Department of Physiology, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Wei Ji
- Department of Physiology, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Li-Cang Zhu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Yang Wang
- Department of Physiology, College of Medicine; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Wen-Yan Shi
- Department of Physiology, College of Medicine; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Li-Ya Shan
- Department of Physiology, College of Medicine; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Liang Zhang
- Department of Physiology, College of Medicine; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Ke-Tao Ma
- Department of Physiology, College of Medicine; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Li Li
- Department of Physiology, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang Province; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jun-Qiang Si
- Department of Physiology; The key Laboratory of Xinjiang Endemic and Ethnic Diseases, College of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Department of Physiology, School of Basic Medical Sciences, Wuhan University; Department of Physiology, School of Basic Medical Sciences, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
17
|
Wang L, Shi KP, Li H, Huang H, Wu WB, Cai CS, Zhang XT, Zhu XB. Activation of the TRAAK two-pore domain potassium channels in rd1 mice protects photoreceptor cells from apoptosis. Int J Ophthalmol 2019; 12:1243-1249. [PMID: 31456913 DOI: 10.18240/ijo.2019.08.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/24/2019] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the expression of TWIK-related arachidonic acid-stimulated K+ channel (TRAAK) in retinal degeneration mice (rd1) and further evaluate how TRAAK affect photoreceptor cell apoptosis. METHODS The rd1 mice were distributed into blank (no treatment), control (1.4% DMSO, intraperitoneal injection) and riluzole groups (4 mg/kg·d, intraperitoneal injection) from postnatal 7d to 10, 14 and 18d; C57 group (no treatment), as age-matched wild-type control. The thickness of the outer nuclear layer (ONL) of retina was detected by paraffin section hematoxylin and eosin staining. The expression of TRAAK and the apoptosis of the ONL cells were detected by immunostaining, Western blotting, and real-time polymerase chain reaction. RESULTS The channel agonist riluzole activated TRAAK and delayed the apoptosis of photoreceptor cells in ONL layer of rd1 mice. Both at mRNA and protein levels, after riluzole treatment, TRAAK expression was significantly upregulated, when compared with the control and blank group. Then we detected a series of apoptosis related mRNA and protein. The anti-apoptotic factor Bcl-2 downregulated and the pro-apoptotic factors Bax and cleaved-caspase-3 upregulated significantly. CONCLUSION Riluzole elevates the expression of TRAAK and inhibits the development of apoptosis. Activation of TRAAK may have some potential effects to put off photoreceptor apoptosis.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Kang-Pei Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Han Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Hao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Wen-Bin Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Chu-Sheng Cai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Xiao-Tong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Xiao-Bo Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|