1
|
Wijekoon N, Gonawala L, Ratnayake P, Dissanayaka P, Gunarathne I, Amaratunga D, Liyanage R, Senanayaka S, Wijesekara S, Gunasekara HH, Vanarsa K, Castillo J, Hathout Y, Dalal A, Steinbusch HW, Hoffman E, Mohan C, de Silva KRD. Integrated genomic, proteomic and cognitive assessment in Duchenne Muscular Dystrophy suggest astrocyte centric pathology. Heliyon 2023; 9:e18530. [PMID: 37593636 PMCID: PMC10432191 DOI: 10.1016/j.heliyon.2023.e18530] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Documented Duchenne Muscular Dystrophy (DMD) biomarkers are confined to Caucasians and are poor indicators of cognitive difficulties and neuropsychological alterations. Materials and methods This study correlates serum protein signatures with cognitive performance in DMD patients of South Asian origin. Study included 25 DMD patients aged 6-16 years. Cognitive profiles were assessed by Wechsler Intelligence Scale for Children. Serum proteome profiling of 1317 proteins was performed in eight DMD patients and eight age-matched healthy volunteers. Results Among the several novel observations we report, better cognitive performance in DMD was associated with increased serum levels of MMP9 and FN1 but decreased Siglec-3, C4b, and C3b. Worse cognitive performance was associated with increased serum levels of LDH-H1 and PDGF-BB but reduced GDF-11, MMP12, TPSB2, and G1B. Secondly, better cognitive performance in Processing Speed (PSI) and Perceptual Reasoning (PRI) domains was associated with intact Dp116, Dp140, and Dp71 dystrophin isoforms while better performance in Verbal Comprehension (VCI) and Working Memory (WMI) domains was associated with intact Dp116 and Dp140 isoforms. Finally, functional pathways shared with Alzheimer's Disease (AD) point towards an astrocyte-centric model for DMD. Conclusion Astrocytic dysfunction leading to synaptic dysfunction reported previously in AD may be a common pathogenic mechanism underlying both AD and DMD, linking protein alterations to cognitive impairment. This new insight may pave the path towards novel therapeutic approaches targeting reactive astrocytes.
Collapse
Affiliation(s)
- Nalaka Wijekoon
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Lakmal Gonawala
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Pulasthi Dissanayaka
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Isuru Gunarathne
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Roshan Liyanage
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Saraji Wijesekara
- Department of Pediatrics, University of Sri Jayewardenepura, 10250, Sri Lanka
- Colombo South Teaching Hospital, 10350, Sri Lanka
| | | | - Kamala Vanarsa
- Department of Bioengineering, University of Houston, Houston, 77204, USA
| | - Jessica Castillo
- Department of Bioengineering, University of Houston, Houston, 77204, USA
| | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, USA
| | - Ashwin Dalal
- Diagnostics Division, Center for DNA Fingerprinting and Diagnostics, India
| | - Harry W.M. Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Eric Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, USA
| | - Chandra Mohan
- Department of Bioengineering, University of Houston, Houston, 77204, USA
| | - K. Ranil D. de Silva
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, 10390, Sri Lanka
| |
Collapse
|
2
|
Krauze M, Jurczak P, Cendrowska-Pinkosz M, Stępniowska A, Matusevičius P, Ognik K. Feasibility of including a phytobiotic containing cinnamon oil
in the diet to reduce the occurrence of neurodegenerative
changes in broiler chicken tissues. JOURNAL OF ANIMAL AND FEED SCIENCES 2023. [DOI: 10.22358/jafs/157534/2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
3
|
Wang J, Wu X. Traditional Chinese Medicine Jiuwei Zhenxin Granules in Treating Depression: An Overview. Neuropsychiatr Dis Treat 2020; 16:2237-2255. [PMID: 33116523 PMCID: PMC7541918 DOI: 10.2147/ndt.s273324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is known as "Yu Zheng" in traditional Chinese medicine (TCM). Jiuwei Zhenxin granules (JZG) is a type of TCM. According to TCM theory, it nourishes the heart and spleen, tonifies Qi, and tranquilizes the spirit, and may also has effects in the treatment of depression. Here, we systematically reviewed recent basic and clinical experimental studies of JZG and depression, including studies of the pharmacological mechanisms, active ingredients, and clinical applications of JZG in depression treatment. This review will deepen our understanding of the pharmacological mechanisms, drug interactions, and clinical applications of TCM prescriptions and provide a basis for the development of new drugs in the treatment of depression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xingmao Wu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|