1
|
Qiao CM, Ma XY, Tan LL, Xia YM, Li T, Wu J, Cui C, Zhao WJ, Shen YQ. Indoleamine 2, 3-dioxygenase 1 inhibition mediates the therapeutic effects in Parkinson's disease mice by modulating inflammation and neurogenesis in a gut microbiota dependent manner. Exp Neurol 2025; 385:115142. [PMID: 39793693 DOI: 10.1016/j.expneurol.2025.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Abnormal tryptophan metabolism is closely linked with neurological disorders. Research has shown that indoleamine 2,3-dioxygenase 1 (IDO-1), the first rate-limiting enzyme in tryptophan degradation, is upregulated in Parkinson's disease (PD). However, the precise role of IDO-1 in PD pathogenesis remains elusive. In this study, we administered 1-methyl-tryptophan (1-MT), an IDO-1 inhibitor, intraperitoneally at 15 mg/kg daily for 21 days to PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at 30 mg/kg daily for 5 days. Our results show that IDO-1 inhibition improves behavioral performance, reduces dopaminergic neuron loss, and decreases serum quinolinic acid (QA) content and the aryl hydrocarbon receptor (AHR) expression in the striatum and colon. It also alleviates glial-associated neuroinflammation and mitigates colonic inflammation (decreasing iNOS, COX2) by suppressing the Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway. Furthermore, IDO-1 inhibition promotes hippocampal neurogenesis (increasing doublecortin positive (DCX+) cells and SOX2+ cells), which have recently been recognized as key pathological features and potential therapeutic targets in PD, likely through the activation of the BDNF/TrkB pathway. We further explored the gut-brain connection by depleting the gut microbiota in mice using antibiotics. Notably, the neuroprotective effects of IDO-1 inhibition were completely abolished in pseudo-germ-free mice (administrated an antibiotic mixture orally for 14 days prior to 1-MT treatment), highlighting the dependency of 1-MT's neuroprotective effects on the presence of gut microbiota. Finally, we found IDO-1 inhibition corrects the abnormal elevation of fecal short chain fatty acids (SCFAs). Collectively, these findings suggest that IDO-1 inhibition may represent a promising therapeutic approach for PD.
Collapse
Affiliation(s)
- Chen-Meng Qiao
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Yu Ma
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lu-Lu Tan
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yi-Meng Xia
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ting Li
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Wu
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chun Cui
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Jiang Zhao
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Qin Shen
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Ran Z, Mu BR, Wang DM, Xin-Huang, Ma QH, Lu MH. Parkinson's Disease and the Microbiota-Gut-Brain Axis: Metabolites, Mechanisms, and Innovative Therapeutic Strategies Targeting the Gut Microbiota. Mol Neurobiol 2024:10.1007/s12035-024-04584-9. [PMID: 39531191 DOI: 10.1007/s12035-024-04584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
The human gut microbiota is diverse and abundant and plays important roles in regulating health by participating in metabolism and controlling physiological activities. The gut microbiota and its metabolites have been shown to affect the functioning of the gut and central nervous system through the microbiota-gut-brain axis. It is well established that microbiota play significant roles in the pathogenesis and progression of Parkinson's disease (PD). Disorders of the intestinal microbiota and altered metabolite levels are closely associated with PD. Here, the changes in intestinal microbiota and effects of metabolites in patients with PD are reviewed. Potential mechanisms underlying intestinal microbiota disorders in the pathogenesis of PD are briefly discussed. Additionally, we outline the current strategies for the treatment of PD that target the gut microbiota, emphasizing the development of promising novel strategies.
Collapse
Affiliation(s)
- Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin-Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Lin K, Zhang Y, Shen Y, Xu Y, Huang M, Liu X. Hydrogen Sulfide can Scavenge Free Radicals to Improve Spinal Cord Injury by Inhibiting the p38MAPK/mTOR/NF-κB Signaling Pathway. Neuromolecular Med 2024; 26:26. [PMID: 38907170 DOI: 10.1007/s12017-024-08794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Spinal cord injury (SCI) causes irreversible cell loss and neurological dysfunctions. Presently, there is no an effective clinical treatment for SCI. It can be the only intervention measure by relieving the symptoms of patients such as pain and fever. Free radical-induced damage is one of the validated mechanisms in the complex secondary injury following primary SCI. Hydrogen sulfide (H2S) as an antioxidant can effectively scavenge free radicals, protect neurons, and improve SCI by inhibiting the p38MAPK/mTOR/NF-κB signaling pathway. In this report, we analyze the pathological mechanism of SCI, the role of free radical-mediated the p38MAPK/mTOR/NF-κB signaling pathway in SCI, and the role of H2S in scavenging free radicals and improving SCI.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yanyang Shen
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yiqin Xu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
4
|
Pandey T, Pandey V. Hydrogen sulfide (H2S) metabolism: Unraveling cellular regulation, disease implications, and therapeutic prospects for precision medicine. Nitric Oxide 2024; 144:20-28. [PMID: 38242281 DOI: 10.1016/j.niox.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Hydrogen sulfide (H2S), traditionally recognized as a noxious gas with a pungent odor, has emerged as a fascinating metabolite originating from proteinaceous foods. This review provides a comprehensive examination of H2S regulatory metabolism in cell. Dysregulation of cellular processes plays a pivotal role in the pathogenesis of numerous diseases. Recent development explores the chemistry of biosynthesis and degradation of H2S in cells. The consequences of dysregulation causing diseases and the emerging role of hydrogen sulfide (H2S) modulation as a promising therapeutic platform has not been explored much. These disturbances can manifest as oxidative stress, inflammation, and aberrant cellular signaling pathways, contributing to the development and progression of diseases such as cancer, cardiovascular disorders, neurodegenerative diseases, and diabetes. Hydrogen sulfide has gained recognition as a key player in cellular regulation. H2S is involved in numerous physiological processes, including vasodilation, inflammation control, and cytoprotection. Recent advances in research have focused on modulating H2S levels to restore cellular balance and mitigate disease progression. This approach involves both exogenous H2S donors and inhibitors of H2S -producing enzymes. By harnessing the versatile properties of H2S, researchers and clinicians may develop innovative therapies that address the root causes of dysregulation-induced diseases. As our understanding of H2S biology deepens, the potential for precision medicine approaches tailored to specific diseases becomes increasingly exciting, holding the promise of improved patient outcomes and a new era in therapeutics.
Collapse
Affiliation(s)
- Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, India
| | - Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
5
|
Wu K, Wang X, Gong L, Zhai X, Wang K, Qiu X, Zhang H, Tang Z, Jiang H, Wang X. Screening of H 2S donors with a red emission mitochondria-targetable fluorescent probe: Toward discovering a new therapeutic strategy for Parkinson's disease. Biosens Bioelectron 2023; 237:115521. [PMID: 37429146 DOI: 10.1016/j.bios.2023.115521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by various factors such as neuroinflammation, oxidative stress, mitochondrial dysfunction, and neuronal apoptosis. Recent studies have shown that H2S supplementation reverses neuronal loss and mitigates motor deficits in PD patients through anti-inflammatory, antioxidant, improved mitochondrial function and proautophagic. Therefore, the discovery and use of H2S donors may be an exciting and intriguing strategy for the treatment of PD. Herein, we report a red emission mitochondria-targetable fluorescent probe, Rho-H2S, which can specifically and sensitively detect H2S with a limit of detection of 62.5 nM. Bioimaging experiments have shown that the probe has excellent mitochondrial targeting and good imaging capabilities for the detection of exogenous and endogenous H2S in cells. More importantly, based on the Rho-H2S probe, we first confirmed the sulforaphane (SFN) among 15 glucosinolate and isothiocyanate compounds from cruciferous vegetables with an outstanding ability to release H2S and we further proved that SFN could alleviate the symptoms of PD in vivo. All results demonstrate that Rho-H2S could be an effective tool for screening H2S donors and can contribute to the development of new therapeutic strategies for PD.
Collapse
Affiliation(s)
- Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Xumei Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Lili Gong
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Xinyuan Zhai
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Kai Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Xiao Qiu
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hao Zhang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Zhixin Tang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Haiqiang Jiang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Xiaoming Wang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
6
|
Rodkin S, Nwosu C, Sannikov A, Tyurin A, Chulkov VS, Raevskaya M, Ermakov A, Kirichenko E, Gasanov M. The Role of Gasotransmitter-Dependent Signaling Mechanisms in Apoptotic Cell Death in Cardiovascular, Rheumatic, Kidney, and Neurodegenerative Diseases and Mental Disorders. Int J Mol Sci 2023; 24:ijms24076014. [PMID: 37046987 PMCID: PMC10094524 DOI: 10.3390/ijms24076014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiovascular, rheumatic, kidney, and neurodegenerative diseases and mental disorders are a common cause of deterioration in the quality of life up to severe disability and death worldwide. Many pathological conditions, including this group of diseases, are based on increased cell death through apoptosis. It is known that this process is associated with signaling pathways controlled by a group of gaseous signaling molecules called gasotransmitters. They are unique messengers that can control the process of apoptosis at different stages of its implementation. However, their role in the regulation of apoptotic signaling in these pathological conditions is often controversial and not completely clear. This review analyzes the role of nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) in apoptotic cell death in cardiovascular, rheumatic, kidney, and neurodegenerative diseases. The signaling processes involved in apoptosis in schizophrenia, bipolar, depressive, and anxiety disorders are also considered. The role of gasotransmitters in apoptosis in these diseases is largely determined by cell specificity and concentration. NO has the greatest dualism; scales are more prone to apoptosis. At the same time, CO, H2S, and SO2 are more involved in cytoprotective processes.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Chizaram Nwosu
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, Rostov-on-Don 344022, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, Ufa 450008, Russia
| | | | - Margarita Raevskaya
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexey Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Evgeniya Kirichenko
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, Rostov-on-Don 344022, Russia
| |
Collapse
|
7
|
Cheng S, Zhang S, Liu R, Zeng H, Yin Y, Zhang M. Potentiometric nanosensor for real-time measurement of hydrogen sulfide in single cell. Chem Commun (Camb) 2023; 59:1959-1962. [PMID: 36722985 DOI: 10.1039/d2cc06557f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One potentiometric nanosensor for monitoring intracellular hydrogen sulfide (H2S) with fast potential response, high selectivity and excellent antifouling properties was developed. This study constructs a powerful tool to real-time track the changes of intracellular H2S in situ, promoting the future studies of physiologically relevant processes.
Collapse
Affiliation(s)
- Shuwen Cheng
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Shuai Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Rantong Liu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Hui Zeng
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Yongyue Yin
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
8
|
Affiliation(s)
- Shuwen Cheng
- Renmin University of China Ringgold standard institution – Department of Chemistry Zhongguancun street 59th Beijing 100872 China
| | - Li Zhang
- Renmin University of China Ringgold standard institution – Department of Chemistry Zhongguancun street 59th Beijing 100872 China
| | - Meining Zhang
- Renmin University of China Ringgold standard institution – Department of Chemistry Zhongguancun street 59th Beijing 100872 China
| |
Collapse
|
9
|
Wang K, Lu C, Wang T, Qiao C, Lu L, Wu D, Lu M, Chen R, Fan L, Tang J. Hyperoside suppresses NLRP3 inflammasome in Parkinson's disease via Pituitary Adenylate Cyclase-Activating Polypeptide. Neurochem Int 2022; 152:105254. [PMID: 34883151 DOI: 10.1016/j.neuint.2021.105254] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome-induced neuroinflammation is the main pathogenic mechanism of dopaminergic (DA) neuron degeneration in Parkinson's disease (PD). Hyperoside (quercetin-3-O-β-D-galactoside), an active compound obtained from the traditional Chinese medicinal herb Abelmoschus manihot, is a potential inflammasome inhibitor. Besides, pituitary adenylate cyclase-activated peptide (PACAP) is an endogenous neuropeptide with neuroprotective effects in various neurodegenerative diseases, such as PD. This study aimed to explore the effects of hyperoside on inflammasome-induced neuroinflammation, and its relationship with PACAP in PD. N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to induce PD-like lesions in mice. Behavioral methods, including the pole test and rotarod test, were used to evaluate the hyperoside effects on MPTP-induced motor dysfunction. Immunohistochemistry was done to detect the loss of DA neurons and activation of glia in the substantia nigra compacta (SNpc). Besides, an enzyme-linked immunosorbent assay (ELISA) was used to detect pro-inflammatory cytokines and Western blotting to detect the inflammasome components. PACAP 6-38, a non-irritating competitive antagonist of PACAP, was used to explore the anti-inflammation mechanism of hyperoside. The results showed that hyperoside inhibited the activation of glia and reduced the secretion of inflammatory factors, protecting DA neurons and reversing the motor dysfunction caused by MPTP. Hyperoside also inhibited the inflammasome activation by reducing the expression of NLRP3, apoptosis-associated speck-like protein containing caspases recruitment domain (ASC), and caspase-1 and increased PACAP content and CREB phosphorylation in the SNpc of the mice. PACAP 6-38 reversed the inhibitory effect of hyperoside on the microglia proliferation and activation of the NLRP3 inflammasome. These results indicate that hyperoside can inhibit the activation of the NLRP3 inflammasome by up-regulating PACAP, thus effectively inhibiting MPTP-induced neuroinflammation and protecting DA neurons. Therefore, hyperoside can be used to treat PD.
Collapse
Affiliation(s)
- Kai Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cai Lu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tong Wang
- Teaching Department of Public Foreign Languages, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Qiao
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Linyu Lu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Die Wu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Ruini Chen
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lu Fan
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Juanjuan Tang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
Small Intestinal Bacterial Overgrowth as Potential Therapeutic Target in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms222111663. [PMID: 34769091 PMCID: PMC8584211 DOI: 10.3390/ijms222111663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence suggests that the gut microbiota and the brain are closely connected via the so-called gut–brain axis. Small intestinal bacterial overgrowth (SIBO) is a gut dysbiosis in which the small intestine is abundantly colonized by bacteria that are typically found in the colon. Though not a disease, it may result in intestinal symptoms caused by the accumulation of microbial gases in the intestine. Intestinal inflammation, malabsorption and vitamin imbalances may also develop. SIBO can be eradicated by one or several courses of antibiotics but reappears if the predisposing condition persists. Parkinson’s disease (PD) is a common neurodegenerative proteinopathy for which disease modifying interventions are not available. Sporadic forms may start in the gut years before the development of clinical features. Increased gastrointestinal transit time is present in most people with PD early during the course of the disease, predisposing to gut dysbiosis, including SIBO. The role that gut dysbiosis may play in the etiopathogenesis of PD is not fully understood yet. Here, we discuss the possibility that SIBO could contribute to the progression of PD, by promoting or preventing neurodegeneration, thus being a potential target for treatments aiming at slowing down the progression of PD. The direct symptomatic impact of SIBO and its impact on symptomatic medication are also briefly discussed.
Collapse
|
11
|
Guo X, Liu J, Jiang L, Gong W, Wu H, He Q. Sulourea-coordinated Pd nanocubes for NIR-responsive photothermal/H 2S therapy of cancer. J Nanobiotechnology 2021; 19:321. [PMID: 34649589 PMCID: PMC8515682 DOI: 10.1186/s12951-021-01042-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Photothermal therapy (PTT) frequently cause thermal resistance in tumor cells by inducing the heat shock response, limiting its therapeutic effect. Hydrogen sulfide (H2S) with appropriate concentration can reverse the Warburg effect in cancer cells. The combination of PTT with H2S gas therapy is expected to achieve synergistic tumor treatment. METHODS Here, sulourea (Su) is developed as a thermosensitive/hydrolysable H2S donor to be loaded into Pd nanocubes through in-depth coordination for construction of the Pd-Su nanomedicine for the first time to achieve photo-controlled H2S release, realizing the effective combination of photothermal therapy and H2S gas therapy. RESULTS The Pd-Su nanomedicine shows a high Su loading capacity (85 mg g-1), a high near-infrared (NIR) photothermal conversion efficiency (69.4%), and NIR-controlled H2S release by the photothermal-triggered hydrolysis of Su. The combination of photothermal heating and H2S produces a strong synergetic effect by H2S-induced inhibition of heat shock response, thereby effectively inhibiting tumor growth. Moreover, high intratumoral accumulation of the Pd-Su nanomedicine after intravenous injection also enables photothermal/photoacoustic dual-mode imaging-guided tumor treatment. CONCLUSIONS The proposed NIR-responsive heat/H2S release strategy provides a new approach for effective cancer therapy.
Collapse
Affiliation(s)
- Xiaoyang Guo
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jia Liu
- Central Laboratory, Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Lingdong Jiang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Wanjun Gong
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Huixia Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Qianjun He
- Central Laboratory, Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
12
|
Hydrogen Sulfide Reduces Ischemia and Reperfusion Injury in Neuronal Cells in a Dose- and Time-Dependent Manner. Int J Mol Sci 2021; 22:ijms221810099. [PMID: 34576259 PMCID: PMC8467989 DOI: 10.3390/ijms221810099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The ischemia-reperfusion injury (IRI) of neuronal tissue, such as the brain and retina, leads to possible cell death and loss of function. Current treatment options are limited, but preliminary observations suggest a protective effect of hydrogen sulfide (H2S). However, the dosage, timing, and mechanism of inhaled H2S treatment after IRI requires further exploration. Methods: We investigated possible neuroprotective effects of inhaled H2S by inducing retinal ischemia–reperfusion injury in rats for the duration of 1 h (120 mmHg), followed by the administration of hydrogen sulfide (H2S) for 1 h at different time points (0, 1.5, and 3 h after the initiation of reperfusion) and at different H2S concentrations (120, 80, and 40 ppm). We quantified the H2S effect by conducting retinal ganglion cell counts in fluorogold-labeled animals 7 days after IRI. The retinal tissue was harvested after 24 h for molecular analysis, including qPCR and Western blotting. Apoptotic and inflammatory mediators, transcription factors, and markers for oxidative stress were investigated. Histological analyses of the retina and the detection of inflammatory cytokines in serum assays were also performed. Results: The effects of inhaled H2S were most evident at a concentration of 80 ppm administered 1.5 h after IRI. H2S treatment increased the expression of anti-apoptotic Bcl-2, decreased pro-apoptotic Bax expression, reduced the release of the inflammatory cytokines IL-1β and TNF-α, attenuated NF-κB p65, and enhanced Akt phosphorylation. H2S also downregulated NOX4 and cystathionine β-synthase. Histological analyses illustrated a reduction in TNF-α in retinal ganglion cells and lower serum levels of TNF-α in H2S-treated animals after IRI. Conclusion: After neuronal IRI, H2S mediates neuroprotection in a time- and dose-dependent manner. The H2S treatment modulated transcription factor NF-κB activation and reduced retinal inflammation.
Collapse
|
13
|
MUNTEANU C, MUNTEANU D, ONOSE G. Hydrogen sulfide (H2S) - therapeutic relevance in rehabilitation and balneotherapy Systematic literature review and meta-analysis based on the PRISMA paradig. BALNEO AND PRM RESEARCH JOURNAL 2021. [DOI: 10.12680/balneo.2021.438] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background. An active molecule in sulfurous mineral - therapeutic waters and also in sapropelic mud is H2S, a hormetic gaseous molecule that can actively penetrate the skin. While high levels of H2S are extremely toxic, low levels are tolerated and have potential cytoprotective effects, with anti-inflammatory and antioxidant applications.
Objective. This systematic review aims to rigorously select related articles and identify within their content the main possible uses of hydrogen sulfide from balneary sources and to explain its physiological mechanisms and therapeutic properties.
Methods. To elaborate our systematic review, we have searched for relevant open access articles in 6 international databases: Cochrane , Elsevier , NCBI/PubMed , NCBI/PMC , PEDro , and ISI Web of Knowledge/Science , published from January 2016 until July 2021. The contextually quested keywords combinations/ syntaxes used are specified on this page. The eligible articles were analyzed in detail regarding pathologies addressed by hydrogen sulfide. All articles with any design (reviews, randomized controlled trials, non-randomized controlled trials, case-control studies, cross-sectional studies), if eligible according to the above-mentioned selection methodology, containing in the title the selected combinations, were included in the analysis. Articles were excluded in the second phase if they did not reach the relevance criterion.
Results. Our search identified, first, 291 articles. After eliminating the duplicates and non-ISI articles, remained 121 papers. In the second phase, we applied a PEDro selection filter, resulting in 108 articles that passed the relevance criterion and were included in this systematic review.
Conclusions. H2S biology and medical relevance are not fully understood and used adequately for sanogenic or medical purposes. More research is needed to fully understand the mechanisms and importance of this therapeutic gase. The link between balneotherapy and medical rehabilitation regarding the usage of hydrogen sulfide emphasises the unity for this medical speciality.
Collapse
Affiliation(s)
- Constantin MUNTEANU
- 1 University of Medicine and Pharmacy “Grigore T. Popa, 16 University Street, Iasi, Romania
| | - Diana MUNTEANU
- National Institute of Rehabilitation, Physical Medicine and Balneoclimatology, Bucharest, Romania
| | - Gelu ONOSE
- Teaching Emergency Hospital ”Bagdasar-Arseni”, Bucharest, Romania , Faculty of Medicine, Department of Physical and Rehabilitation Medicine, University of Medicine and Pharmacy ”Carol Davila”, Bucharest,
| |
Collapse
|