1
|
Bonfanti L, La Rosa C, Ghibaudi M, Sherwood CC. Adult neurogenesis and "immature" neurons in mammals: an evolutionary trade-off in plasticity? Brain Struct Funct 2024; 229:1775-1793. [PMID: 37833544 PMCID: PMC11485216 DOI: 10.1007/s00429-023-02717-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capacity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates, whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species. Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical markers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated, non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons; cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents, while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis is that these populations of non-newly generated "immature" neurons might represent a reservoir of developmentally plastic cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to maintain a "reservoir of plasticity" in brain regions that have distinct roles in species-specific socioecological adaptations, such as the neocortex and olfactory structures.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy.
| | - Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
González-Gil A, Sánchez-Maldonado B, Rojo C, Flor-García M, Queiroga FL, Ovalle S, Ramos-Ruiz R, Fuertes-Recuero M, Picazo RA. Proneurogenic actions of follicle-stimulating hormone on neurospheres derived from ovarian cortical cells in vitro. BMC Vet Res 2024; 20:372. [PMID: 39160565 PMCID: PMC11334536 DOI: 10.1186/s12917-024-04203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Neural stem and progenitor cells (NSPCs) from extra-neural origin represent a valuable tool for autologous cell therapy and research in neurogenesis. Identification of proneurogenic biomolecules on NSPCs would improve the success of cell therapies for neurodegenerative diseases. Preliminary data suggested that follicle-stimulating hormone (FSH) might act in this fashion. This study was aimed to elucidate whether FSH promotes development, self-renewal, and is proneurogenic on neurospheres (NS) derived from sheep ovarian cortical cells (OCCs). Two culture strategies were carried out: (a) long-term, 21-days NS culture (control vs. FSH group) with NS morphometric evaluation, gene expression analyses of stemness and lineage markers, and immunolocalization of NSPCs antigens; (b) NS assay to demonstrate FSH actions on self-renewal and differentiation capacity of NS cultured with one of three defined media: M1: positive control with EGF/FGF2; M2: control; and M3: M2 supplemented with FSH. RESULTS In long-term cultures, FSH increased NS diameters with respect to control group (302.90 ± 25.20 μm vs. 183.20 ± 7.63 on day 9, respectively), upregulated nestin (days 15/21), Sox2 (day 21) and Pax6 (days 15/21) and increased the percentages of cells immunolocalizing these proteins. During NS assays, FSH stimulated NSCPs proliferation, and self-renewal, increasing NS diameters during the two expansion periods and the expression of the neuron precursor transcript DCX during the second one. In the FSH-group there were more frequent cell-bridges among neighbouring NS. CONCLUSIONS FSH is a proneurogenic hormone that promotes OCC-NSPCs self-renewal and NS development. Future studies will be necessary to support the proneurogenic actions of FSH and its potential use in basic and applied research related to cell therapy.
Collapse
Affiliation(s)
- Alfredo González-Gil
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain.
| | - Belén Sánchez-Maldonado
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, 28040, Spain
| | - Concepción Rojo
- Department of Anatomy and Embriology, School of Veterinary Medicine, University Complutense of Madrid, Madrid, 28040, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Felisbina Luisa Queiroga
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal.
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Quinta dos Prados, Vila Real, 5000-801, Portugal.
| | - Susana Ovalle
- Genomic Unit Cantoblanco, Fundación Parque Científico de Madrid. C/ Faraday 7, Madrid, 28049, Spain
| | - Ricardo Ramos-Ruiz
- Genomic Unit Cantoblanco, Fundación Parque Científico de Madrid. C/ Faraday 7, Madrid, 28049, Spain
| | - Manuel Fuertes-Recuero
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain
| | - Rosa Ana Picazo
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain
| |
Collapse
|
3
|
Benedetti B, Reisinger M, Hochwartner M, Gabriele G, Jakubecova D, Benedetti A, Bonfanti L, Couillard‐Despres S. The awakening of dormant neuronal precursors in the adult and aged brain. Aging Cell 2023; 22:e13974. [PMID: 37649323 PMCID: PMC10726842 DOI: 10.1111/acel.13974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Beyond the canonical neurogenic niches, there are dormant neuronal precursors in several regions of the adult mammalian brain. Dormant precursors maintain persisting post-mitotic immaturity from birth to adulthood, followed by staggered awakening, in a process that is still largely unresolved. Strikingly, due to the slow rate of awakening, some precursors remain immature until old age, which led us to question whether their awakening and maturation are affected by aging. To this end, we studied the maturation of dormant precursors in transgenic mice (DCX-CreERT2 /flox-EGFP) in which immature precursors were labelled permanently in vivo at different ages. We found that dormant precursors are capable of awakening at young age, becoming adult-matured neurons (AM), as well as of awakening at old age, becoming late AM. Thus, protracted immaturity does not prevent late awakening and maturation. However, late AM diverged morphologically and functionally from AM. Moreover, AM were functionally most similar to neonatal-matured neurons (NM). Conversely, late AM were endowed with high intrinsic excitability and high input resistance, and received a smaller amount of spontaneous synaptic input, implying their relative immaturity. Thus, late AM awakening still occurs at advanced age, but the maturation process is slow.
Collapse
Affiliation(s)
- Bruno Benedetti
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Maximilian Reisinger
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Marie Hochwartner
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Gabriele Gabriele
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Dominika Jakubecova
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Ariane Benedetti
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO)OrbassanoItaly
- Department of Veterinary SciencesUniversity of TurinTorinoItaly
| | - Sebastien Couillard‐Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
4
|
Porter DDL, Henry SN, Ahmed S, Rizzo AL, Makhlouf R, Gregg C, Morton PD. Neuroblast migration along cellular substrates in the developing porcine brain. Stem Cell Reports 2022; 17:2097-2110. [PMID: 35985331 PMCID: PMC9481921 DOI: 10.1016/j.stemcr.2022.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
In the past decade it has become evident that neuroblasts continue to supply the human cortex with interneurons via unique migratory streams shortly following birth. Owing to the size of the human brain, these newborn neurons must migrate long distances through complex cellular landscapes to reach their final locations. This process is poorly understood, largely because of technical difficulties in acquiring and studying neurotypical postmortem human samples along with diverging developmental features of well-studied mouse models. We reasoned that migratory streams of neuroblasts utilize cellular substrates, such as blood vessels, to guide their trek from the subventricular zone to distant cortical targets. Here, we evaluate the association between young interneuronal migratory streams and their preferred cellular substrates in gyrencephalic piglets during the developmental equivalent of human birth, infancy, and toddlerhood. Migratory streams of neuroblasts are preserved through postnatal swine development Evidence of young neocortical interneurons within migratory streams Neuroblasts are tightly associated with vascular and astrocytic cellular substrates Harm to migratory interneurons or their substrates may have lifelong consequences
Collapse
Affiliation(s)
- Demisha D L Porter
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sara N Henry
- Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sadia Ahmed
- Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Amy L Rizzo
- Office of the University Veterinarian & Animal Resources, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rita Makhlouf
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Collin Gregg
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Paul D Morton
- Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Benedetti B, Couillard-Despres S. Why Would the Brain Need Dormant Neuronal Precursors? Front Neurosci 2022; 16:877167. [PMID: 35464307 PMCID: PMC9026174 DOI: 10.3389/fnins.2022.877167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Dormant non-proliferative neuronal precursors (dormant precursors) are a unique type of undifferentiated neuron, found in the adult brain of several mammalian species, including humans. Dormant precursors are fundamentally different from canonical neurogenic-niche progenitors as they are generated exquisitely during the embryonic development and maintain a state of protracted postmitotic immaturity lasting up to several decades after birth. Thus, dormant precursors are not pluripotent progenitors, but to all effects extremely immature neurons. Recently, transgenic models allowed to reveal that with age virtually all dormant precursors progressively awaken, abandon the immature state, and become fully functional neurons. Despite the limited common awareness about these cells, the deep implications of recent discoveries will likely lead to revisit our understanding of the adult brain. Thus, it is timely to revisit and critically assess the essential evidences that help pondering on the possible role(s) of these cells in relation to cognition, aging, and pathology. By highlighting pivoting findings as well as controversies and open questions, we offer an exciting perspective over the field of research that studies these mysterious cells and suggest the next steps toward the answer of a crucial question: why does the brain need dormant neuronal precursors?
Collapse
Affiliation(s)
- Bruno Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- *Correspondence: Sebastien Couillard-Despres,
| |
Collapse
|
6
|
Bonfanti L, Seki T. The PSA-NCAM-Positive "Immature" Neurons: An Old Discovery Providing New Vistas on Brain Structural Plasticity. Cells 2021; 10:2542. [PMID: 34685522 PMCID: PMC8534119 DOI: 10.3390/cells10102542] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Studies on brain plasticity have undertaken different roads, tackling a wide range of biological processes: from small synaptic changes affecting the contacts among neurons at the very tip of their processes, to birth, differentiation, and integration of new neurons (adult neurogenesis). Stem cell-driven adult neurogenesis is an exception in the substantially static mammalian brain, yet, it has dominated the research in neurodevelopmental biology during the last thirty years. Studies of comparative neuroplasticity have revealed that neurogenic processes are reduced in large-brained mammals, including humans. On the other hand, large-brained mammals, with respect to rodents, host large populations of special "immature" neurons that are generated prenatally but express immature markers in adulthood. The history of these "immature" neurons started from studies on adhesion molecules carried out at the beginning of the nineties. The identity of these neurons as "stand by" cells "frozen" in a state of immaturity remained un-detected for long time, because of their ill-defined features and because clouded by research ef-forts focused on adult neurogenesis. In this review article, the history of these cells will be reconstructed, and a series of nuances and confounding factors that have hindered the distinction between newly generated and "immature" neurons will be addressed.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 160-8402, Japan
| |
Collapse
|
7
|
Bonfanti L, Charvet CJ. Brain Plasticity in Humans and Model Systems: Advances, Challenges, and Future Directions. Int J Mol Sci 2021; 22:9358. [PMID: 34502267 PMCID: PMC8431131 DOI: 10.3390/ijms22179358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Plasticity, and in particular, neurogenesis, is a promising target to treat and prevent a wide variety of diseases (e.g., epilepsy, stroke, dementia). There are different types of plasticity, which vary with age, brain region, and species. These observations stress the importance of defining plasticity along temporal and spatial dimensions. We review recent studies focused on brain plasticity across the lifespan and in different species. One main theme to emerge from this work is that plasticity declines with age but that we have yet to map these different forms of plasticity across species. As part of this effort, we discuss our recent progress aimed to identify corresponding ages across species, and how this information can be used to map temporal variation in plasticity from model systems to humans.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | | |
Collapse
|