1
|
Yu LQ, Ma H, Cao LY, Zhou YL. Noninvasive Evaluation of Acupuncture-Induced Cortical Plasticity in Advanced Rehabilitation of Facial Paralysis. J Craniofac Surg 2024; 35:2015-2020. [PMID: 39178417 DOI: 10.1097/scs.0000000000010544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 08/25/2024] Open
Abstract
OBJECTIVE Facial paralysis (FP), which resulted from head and neck cancer resection, significantly impacts patients' quality of life. Traditional assessments rely on subjective evaluations and electromyography, whereas functional magnetic resonance imaging offers a noninvasive alternative for enhanced rehabilitation. Acupuncture has shown promise in promoting cerebral cortex reorganization, yet the precise relationship between acupuncture-induced structural and functional changes remains unclear, necessitating further investigation into therapeutic mechanisms. METHODS Fifty-five patients afflicted with FP underwent evaluations using voxel-mirrored homotopic connectivity (VMHC) and tract-based spatial statistics and were divided into the acupuncture intervention group (n = 35) and pseudo intervention group (n = 20). Comparative analyses of metrics pre and postintervention were conducted to delineate therapy-induced modifications in acupuncture intervention. The postacupuncture effect between groups to verify the necessity of accurate positioning for the rehabilitation of FP. RESULTS Patients with FP showed deficits in VMHC in regions of the postcentral, precentral, and parietal areas. Corpus callosum and internal capsule showed significantly increased fractional anisotropy of the white matter skeleton in tract-based spatial statistics after treatment. Comparison postintervention results between groups exhibited deficits in VMHC and increased fractional anisotropy in regions of the corpus callosum in the acupuncture intervention group. CONCLUSIONS Early acupuncture intervention may suppress cortical hyperactivation and restore interhemispheric inhibition across the corpus callosum to inhibit maladaptive structural plasticity. Precise acupoint localization is crucial for effective therapy, highlighting the potential of postacupuncture cortical space data for refining therapeutic strategies.
Collapse
Affiliation(s)
- Li-Qing Yu
- Department of Acupuncture, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian-Ying Cao
- Department of Acupuncture, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital
| | - Yu-Lu Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Di Stadio A, Ralli M, De Luca P, Sossamon J, Frohman TC, Altieri M, La Mantia I, Ferlito S, Frohman EM, Brenner MJ. Combining early lower eyelid surgery with neuromuscular retraining for synkinesis prevention after facial palsy: the role of the eye in aberrant facial nerve regeneration. Front Neurol 2024; 15:1443591. [PMID: 39359872 PMCID: PMC11445145 DOI: 10.3389/fneur.2024.1443591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Background Facial synkinesis (FS) is a distressing sequela of facial palsy (FP) characterized by involuntary, simultaneous movements of facial muscles occurring during voluntary facial expressions. Treatment of synkinesis is challenging, and preventive methods are needed. Aim This study evaluated the efficacy of physical facial nerve rehabilitation (PFNR) therapy alone vs. PNFR with eyelid surgery to correct lagophthalmos and prevent the onset of synkinesis. Methods Twenty five outpatients were randomized to receive either PFNR alone (neuromuscular retraining and Kabat proprioceptive neuromuscular facilitation) or PNFR and early (90 days after FP onset) eyelid surgery (involving a conservative oculoplastic correction for lagophthalmos with epiphora or ectropion). Comprehensive otolaryngological assessments and Magnetic Resonance Imaging (MRI) were conducted. Synkinesis progression was measured using Another Disease Scale (ADS) at baseline, 3-, 6-, 12-, and 24-months post-treatment. The data were analyzed with ANOVA, τ-test, Chi-Square analyses. Results Patients undergoing eyelid surgery with PFNR showed faster (p < 0.001) and better recovery of facial movements (p < 0.05) than patients receiving PFNR alone comparing T0 and T12 (p < 0.0001). No synkinesis were observed in the PFNR plus surgery group while 37% of patients in PFNR alone had synkinesis (p = 0.03). At 24 months, none of the patients in the surgery group presented synkinesis. Conclusion Combining early surgical treatment of paralytic lagophthalmos or epiphora with PFNR accelerated functional recovery and reduced synkinesis in patients with FP compared to facial rehabilitation alone. Further investigations in larger populations with long-term follow-up are needed. Clinical trial registration https://clinicaltrials.gov/study/NCT06538103, NCT06538103.
Collapse
Affiliation(s)
- Arianna Di Stadio
- Otolaryngology Unit, Department GF Ingrassia, University of Catania, Catania, Italy
| | - Massimo Ralli
- Organ of Sense Department, University La Sapienza, Rome, Italy
| | - Pietro De Luca
- Otolaryngology Department, Fatebenefratelli-Isola Hospital, Rome, Italy
| | - Jake Sossamon
- Medical University of South Carolina, Charleston, SC, United States
| | - Teresa C. Frohman
- Distinguished Senior Fellows (Sabbatical) Neuroimmunology Laboratory of Professor Lawrence Steinman, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Marta Altieri
- Neurology Department, University La Sapienza, Rome, Italy
| | - Ignazio La Mantia
- Otolaryngology Unit, Department GF Ingrassia, University of Catania, Catania, Italy
| | - Salvatore Ferlito
- Otolaryngology Unit, Department GF Ingrassia, University of Catania, Catania, Italy
| | - Elliot M. Frohman
- Distinguished Senior Fellows (Sabbatical) Neuroimmunology Laboratory of Professor Lawrence Steinman, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Michael J. Brenner
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Zhu H, Cui T, Xue Y, Wang D, Ding W, Wu R. Spatial functional reorganizations can serve as potential biomarkers of post facial palsy synkinesis. Cereb Cortex 2024; 34:bhae184. [PMID: 38715407 DOI: 10.1093/cercor/bhae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 01/28/2025] Open
Abstract
Facial palsy can result in a serious complication known as facial synkinesis, causing both physical and psychological harm to the patients. There is growing evidence that patients with facial synkinesis have brain abnormalities, but the brain mechanisms and underlying imaging biomarkers remain unclear. Here, we employed functional magnetic resonance imaging (fMRI) to investigate brain function in 31 unilateral post facial palsy synkinesis patients and 25 healthy controls during different facial expression movements and at rest. Combining surface-based mass-univariate analysis and multivariate pattern analysis, we identified diffused activation and intrinsic connection patterns in the primary motor cortex and the somatosensory cortex on the patient's affected side. Further, we classified post facial palsy synkinesis patients from healthy subjects with favorable accuracy using the support vector machine based on both task-related and resting-state functional magnetic resonance imaging data. Together, these findings indicate the potential of the identified functional reorganizations to serve as neuroimaging biomarkers for facial synkinesis diagnosis.
Collapse
Affiliation(s)
- Hongyan Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Tianze Cui
- School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yanping Xue
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Daohe Wang
- Department of Plastic Surgery, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200032, China
| | - Wei Ding
- Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Ruiqi Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
4
|
Zhang CH, Wang HQ, Lu Y, Wang W, Ma H, Lu YC. Exploration of rich-club reorganization in facial synkinesis: insights from structural and functional brain network analysis. Cereb Cortex 2023; 33:11570-11581. [PMID: 37851710 DOI: 10.1093/cercor/bhad390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Facial palsy therapies based on cortical plasticity are in development, but facial synkinesis progress is limited. Studying neural plasticity characteristics, especially network organization and its constitutive elements (nodes/edges), is the key to overcome the bottleneck. We studied 55 participants (33 facial synkinesis patients, 22 healthy controls) with clinical assessments, functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI). We analyzed rich-club organization and metrics of structural brain networks (rich-club coefficients, strength, degree, density, and efficiency). Functional brain network metrics, including functional connectivity and its coupling with the structural network, were also computed. Patients displayed reduced strength and density of rich-club nodes and edges, as well as decreased global efficiency. All nodes exhibited decreased nodal efficiency in patients. Patients had significantly increased functional connectivity and decreased structural-functional coupling strength in rich-club nodes, rich-club edges, and feeder edges. Our study indicates that facial synkinesis patients have weakened structural connections but enhanced functional transmission from rich-club nodes. The loss of connections and efficiency in structural network may trigger compensatory increases in functional connectivity of rich-club nodes. Two potential biomarkers, rich-club edge density and structural-functional coupling strength, may serve as indicators of disease outcome. These findings provide valuable insights into synkinesis mechanisms and offer potential targets for cortical intervention.
Collapse
Affiliation(s)
- Chen-Hao Zhang
- Wound Healing Center, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Han-Qi Wang
- Department of Radiology, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200011, China
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200011, China
| | - Ye-Chen Lu
- Wound Healing Center, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| |
Collapse
|
5
|
Guntinas-Lichius O, Prengel J, Cohen O, Mäkitie AA, Vander Poorten V, Ronen O, Shaha A, Ferlito A. Pathogenesis, diagnosis and therapy of facial synkinesis: A systematic review and clinical practice recommendations by the international head and neck scientific group. Front Neurol 2022; 13:1019554. [PMID: 36438936 PMCID: PMC9682287 DOI: 10.3389/fneur.2022.1019554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Post-paralytic facial synkinesis after facial nerve injury produces functional disabilities and mimetic deficits, but also cosmetic and non-motor psychosocial impairments for the patients. These patients typically have a high and continuous high motivation for rehabilitation. The aim is to inform the affected patients and their therapeutic professionals (otorhinolaryngologist - head and neck surgeons; oral-maxillofacial surgeons, plastic and reconstructive surgeons, neurosurgeons, neurologists, and mime therapists be it speech and language therapy- or physiotherapy-based) and to provide practical recommendations for diagnostics and a stepwise systematic treatment approach of facial synkinesis. Methods In the first phase, a systematic literature search on the topic in PubMed and ScienceDirect starting in 2008 resulted in 132 articles. These were the basis for the review and a comprehensive series of consensus statements on the most important diagnostic tests and treatment options. In the second phase, one consensus article circulated among the membership of the International Head and Neck Scientific Group until a final agreement was reached for all recommendations. Results Diagnostics should include a standardized assessment of the degree of synkinesis using validated clinician-graded instruments and synkinesis-specific patient-reported outcome measures. Treatments for facial synkinesis include facial training mainly based on facial biofeedback retraining, chemodenervation with botulinum toxin, selective neurectomy, myectomy, and any combination treatment of these options. Conclusion A basic understanding of the pathomechanisms of synkinesis is essential to understand the treatment strategies. A standardized assessment of the synkinetic symptoms and the individual synkinesis pattern is needed. The first-line treatment is facial training, followed by botulinum toxin. Surgery is reserved for individual cases with unsatisfactory first-line treatment.
Collapse
Affiliation(s)
- Orlando Guntinas-Lichius
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany,Facial Nerve Center, Jena University Hospital, Jena, Germany,Multidisciplinary Salivary Gland Society, Geneva, Switzerland,*Correspondence: Orlando Guntinas-Lichius
| | - Jonas Prengel
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany,Facial Nerve Center, Jena University Hospital, Jena, Germany
| | - Oded Cohen
- Department of Otolaryngology, Head and Neck Surgery, Soroka Medical Center, Affiliated With Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Antti A. Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Vincent Vander Poorten
- Multidisciplinary Salivary Gland Society, Geneva, Switzerland,Department of Oncology, Section Head and Neck Oncology, KU Leuven, Leuven, Belgium,Otorhinolaryngology, Head and Neck Surgery, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Ohad Ronen
- Department of Otolaryngology-Head and Neck Surgery, Galilee Medical Center, Affiliated With Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ashok Shaha
- Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
6
|
Zhu GC, Xiao DJ, Zhu BW, Xiao Y. Repairing whole facial nerve defects with xenogeneic acellular nerve grafts in rhesus monkeys. Neural Regen Res 2021; 17:1131-1137. [PMID: 34558542 PMCID: PMC8552849 DOI: 10.4103/1673-5374.324853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acellular nerve allografts conducted via chemical extraction have achieved satisfactory results in bridging whole facial nerve defects clinically, both in terms of branching a single trunk and in connecting multiple branches of an extratemporal segment. However, in the clinical treatment of facial nerve defects, allogeneic donors are limited. In this experiment, we exposed the left trunk and multiple branches of the extratemporal segment in six rhesus monkeys and dissected a gap of 25 mm to construct a monkey model of a whole left nerve defect. Six monkeys were randomly assigned to an autograft group or a xenogeneic acellular nerve graft group. In the autograft group, the 25-mm whole facial nerve defect was immediately bridged using an autogenous ipsilateral great auricular nerve, and in the xenogeneic acellular nerve graft group, this was done using a xenogeneic acellular nerve graft with trunk-branches. Examinations of facial symmetry, nerve-muscle electrophysiology, retrograde transport of labeled neuronal tracers, and morphology of the regenerated nerve and target muscle at 8 months postoperatively showed that the faces of the monkey appeared to be symmetrical in the static state and slightly asymmetrical during facial movement, and that they could actively close their eyelids completely. The degree of recovery from facial paralysis reached House-Brackmann grade II in both groups. Compound muscle action potentials were recorded and orbicularis oris muscles responded to electro-stimuli on the surgical side in each monkey. FluoroGold-labeled neurons could be detected in the facial nuclei on the injured side. Immunohistochemical staining showed abundant neurofilament-200-positive axons and soluble protein-100-positive Schwann cells in the regenerated nerves. A large number of mid-graft myelinated axons were observed via methylene blue staining and a transmission electron microscope. Taken together, our data indicate that xenogeneic acellular nerve grafts from minipigs are safe and effective for repairing whole facial nerve defects in rhesus monkeys, with an effect similar to that of autologous nerve transplantation. Thus, a xenogeneic acellular nerve graft may be a suitable choice for bridging a whole facial nerve defect if no other method is available. The study was approved by the Laboratory Animal Management Committee and the Ethics Review Committee of the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, China (approval No. 2018-D-1) on March 15, 2018.
Collapse
Affiliation(s)
- Guo-Chen Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University; Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
| | - Da-Jiang Xiao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University; Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
| | - Bi-Wen Zhu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, China
| | - Yan Xiao
- Department of Pathology, Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China
| |
Collapse
|