1
|
Wan XX, Hu XM, Xiong K. Multiple pretreatments can effectively improve the functionality of mesenchymal stem cells. World J Stem Cells 2024; 16:58-63. [PMID: 38455107 PMCID: PMC10915953 DOI: 10.4252/wjsc.v16.i2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/30/2024] [Indexed: 02/26/2024] Open
Abstract
In this editorial, we offer our perspective on the groundbreaking study entitled "Hypoxia and inflammatory factor preconditioning enhances the immunosuppressive properties of human umbilical cord mesenchymal stem cells", recently published in World Journal of Stem Cells. Despite over three decades of research on the clinical application of mesenchymal stem cells (MSCs), only a few therapeutic products have made it to clinical use, due to multiple preclinical and clinical challenges yet to be addressed. The study proved the hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics, which revealed the combination of inflammatory factors and hypoxic preconditioning offers a promising approach to enhance the function of MSCs. As we delve deeper into the intricacies of pretreatment methodologies, we anticipate a transformative shift in the landscape of MSC-based therapies, ultimately contributing to improved patient outcomes and advancing the field as a whole.
Collapse
Affiliation(s)
- Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China.
| |
Collapse
|
2
|
Zhang G, Dai Y, Lang J. Preliminary study on mesenchymal stem cells in repairing nerve injury in pelvic floor denervation. Front Bioeng Biotechnol 2023; 11:1190068. [PMID: 37425357 PMCID: PMC10325727 DOI: 10.3389/fbioe.2023.1190068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: Nerve injury is considered one of the causes of pelvic floor dysfunction. Mesenchymal stem cells (MSCs) transplantation provides new possibilities for refractory degenerative diseases. This study aimed to explore the possibility and strategy of mesenchymal stem cells in treating pelvic floor dysfunction nerve injury. Methods: MSCs were isolated from human adipose tissue and cultured. A MSCs suspension (40 µL at 5 × 107/mL) was loaded on a gelatin scaffold. A rat model of anterior vaginal wall nerve injury was established by bilateral pudendal nerve denervation. The nerve tissue repair effect of mesenchymal stem cells transplanted into the anterior vaginal wall of a rat model was explored and compared in the following three groups: blank gelatin scaffold group (GS group), mesenchymal stem cell injection group (MSC group), and mesenchymal stem cells loaded on the gelatin scaffold group (MSC-GS group). Nerve fiber counting under a microscope and mRNA expression of neural markers were tested. Moreover, mesenchymal stem cells were induced into neural stem cells in vitro, and their therapeutic effect was explored. Results: Rat models of anterior vaginal wall nerve injury induced by bilateral pudendal nerve denervation showed a decreased number of nerve fibers in the anterior vaginal wall. qRT-PCR revealed that the content of neurons and nerve fibers in the rat model began to decrease 1 week after the operation and this could continue for 3 months. In vivo experiments showed that MSC transplantation improved the nerve content, and MSCs loaded on the gelatin scaffold had an even better effect. mRNA expression analysis demonstrated that MSCs loaded on gelatin scaffolds induced a higher and earlier gene expression of neuron-related markers. Induced neural stem cell transplantation was superior in improving the nerve content and upregulating the mRNA expression of neuron-related markers in the early stage. Conclusion: MSCs transplantation showed a promising repair capacity for nerve damage in the pelvic floor. The supporting role of gelatin scaffolds might promote and strengthen the nerve repair ability at an early stage. Preinduction schemes could provide an improved regenerative medicine strategy for innervation recovery and functional restoration in pelvic floor disorders in the future.
Collapse
Affiliation(s)
| | - Yuxin Dai
- Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
3
|
Yan T, Huang L, Yan Y, Zhong Y, Xie H, Wang X. Bone marrow mesenchymal stem cell-derived exosome miR-29b-3p alleviates UV irradiation-induced photoaging in skin fibroblast. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:235-245. [PMID: 35950642 DOI: 10.1111/phpp.12827] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Mesenchymal stem cells-derived exosome (MSCs-exo) was identified to reduce photoaging. The purpose of this study was to investigate the potential role of microRNA (miR)-29b-3p derived from bone marrow MSCs-exo (BMSCs-exo) in photoaging. METHODS Exosomes were isolated from BMSCs and verified by Western blot. A photoaging cell model was constructed by UVB irradiation of human dermal fibroblasts (HDFs). Quantitative real-time PCR (RT-qPCR) was performed to detect the mRNA levels of miR-29b-3p, collagen type I and matrix metalloproteinases (MMPs). CCK-8, Transwell and flow cytometry were applicated to examine cell viability, migration and apoptosis. Commercial kits are used to measure levels of oxidative stress indicators. Finally, a dual-luciferase reporter assay was applied to validate the target of miR-29b-3p. RESULTS Extracted exosomes were positive for HSP70 and CD9. Survival of HDFs increased in an exosome concentration-dependent manner. UVB irradiation inhibited miR-29b-3p levels compared with controls, but BMSCs-exo treatment restored miR-29b-3p levels (p < .05). Additionally, BMSCs-exo-miR-29b-3p reversed the inhibition of HDFs migration and oxidative stress by UVB irradiation, as well as the promotion of apoptosis. However, this reversal was attenuated by the suppression of miR-29b-3p (p < .05). Furthermore, BMSCs-exo-miR-29b-3p also inhibited the degradation of collagen type I and the production of MMPs in photoaging, and they were also eliminated by the reduced miR-29b-3p. Finally, MMP-2 was the target gene of miR-29b-3p. CONCLUSION Our study presented a novel role for BMSCs-exo-miR-29b-3p in improving skin photoaging function, and these findings may provide new insights into the targeted treatment of skin photoaging.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Medical Cosmetology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Lining Huang
- Department of Medical Cosmetology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yunling Yan
- Department of Medical Cosmetology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yiping Zhong
- Department of Medical Cosmetology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Heng Xie
- Department of Medical Cosmetology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xiaohua Wang
- Department of Medical Cosmetology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Human umbilical cord mesenchymal stem cell-derived exosomes promote neurological function recovery in rat after traumatic brain injury by inhibiting the activation of microglia and astrocyte. Regen Ther 2022; 21:282-287. [PMID: 36092501 PMCID: PMC9440059 DOI: 10.1016/j.reth.2022.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
|
5
|
Cui E, Zhang L, Pan X, Zhang Q, Zhang L, Wu F, Chen N, Lv L, Chen W, Chen H, Lin A, Wang F, Liang J, Pan R. RNA-Sequencing approach for exploring the therapeutic effect of umbilical cord mesenchymal stem/stromal cells on lipopolysaccharide-induced acute lung injury. Front Immunol 2022; 13:1021102. [PMID: 36341363 PMCID: PMC9632738 DOI: 10.3389/fimmu.2022.1021102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022] Open
Abstract
Acute lung injury (ALI) is significantly associated with morbidity and mortality in patients with critical diseases. In recent years, studies have identified that mesenchymal stem/stromal cells (MSCs) ameliorate ALI and pulmonary fibrosis. However, the mechanism underlying this outcome in ALI has not yet been investigated. In this study, RNA sequencing technology was used to analyze the gene expression profile of lung tissue in lipopolysaccharide (LPS)-induced ALI rats following treatment with human umbilical cord MSC (HUCMSC). Differential expression analyses, gene ontology annotation, Kyoto Encyclopedia of Genes and Genomes enrichment, protein–protein interaction network identification, and hub gene analysis were also performed. HUCMSC treatment decreased inflammatory factor production and alveolar exudates, and attenuated lung damage in LPS-induced ALI rats. The RNA-Seq data indicated that HUCMSC treatment activated the IL-17, JAK-STAT, NF-κB, and TNF-α signaling pathways, increased oxygen transport, and decreased extracellular matrix organization. HUCMSC exert beneficial effects on ALI via these signaling pathways by reducing inflammation, inhibiting pulmonary fibrosis, and improving lung ventilation. Moreover, our study further revealed the hub genes (Tbx2, Nkx2-1, and Atf5) and signaling pathways involved in HUCMSC treatment, thus providing novel perspectives for future research into the molecular mechanisms underlying cell treatment of ALI. HUCMSC can regulate multiple genes and signaling pathways, which can prevent LPS-induced lung damage in an ALI rat model.
Collapse
Affiliation(s)
- Enhai Cui
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luwen Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Qiang Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Ling Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Feifei Wu
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Na Chen
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Lv
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Chen
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Chen
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Feng Wang
- Department of Nephrology, Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinfeng Liang
- Department of Drug Evaluation, Zhejiang Center for Drug & Cosmetic Evaluation, Hangzhou, China
- *Correspondence: Ruolang Pan, ; Jinfeng Liang,
| | - Ruolang Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
- *Correspondence: Ruolang Pan, ; Jinfeng Liang,
| |
Collapse
|
6
|
Di SJ, Wu SY, Liu TJ, Shi YY. Stem cell therapy as a promising strategy in necrotizing enterocolitis. Mol Med 2022; 28:107. [PMID: 36068527 PMCID: PMC9450300 DOI: 10.1186/s10020-022-00536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease that affects newborns, particularly preterm infants, and is associated with high morbidity and mortality. No effective therapeutic strategies to decrease the incidence and severity of NEC have been developed to date. Stem cell therapy has been explored and even applied in various diseases, including gastrointestinal disorders. Animal studies on stem cell therapy have made great progress, and the anti-inflammatory, anti-apoptotic, and intestinal barrier enhancing effects of stem cells may be protective against NEC clinically. In this review, we discuss the therapeutic mechanisms through which stem cells may function in the treatment of NEC.
Collapse
Affiliation(s)
- Si-Jia Di
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Si-Yuan Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tian-Jing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
7
|
Adugna DG, Aragie H, Kibret AA, Belay DG. Therapeutic Application of Stem Cells in the Repair of Traumatic Brain Injury. Stem Cells Cloning 2022; 15:53-61. [PMID: 35859889 PMCID: PMC9289752 DOI: 10.2147/sccaa.s369577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/10/2022] [Indexed: 12/03/2022] Open
Abstract
Traumatic brain injury is the main cause of injury-related deaths and disabilities throughout the world, which is characterized by a disruption of the normal physiology of the brain following trauma. It can potentially cause severe complications such as physical, cognitive, and emotional impairment. In addition to understanding traumatic brain injury pathophysiology, this review explains the therapeutic potential of stem cells following brain injury in two pathways: response of endogenous neurogenic cells and transplantation of exogenous stem cell therapy. After traumatic brain injuries, clinical evidence indicated that endogenous neural progenitor cells might play an important role in regenerative medicine to treat brain injury. This is due to an increased neurogenic regeneration ability of these cells following brain injury. Besides, exogenous stem cell transplantation has also accelerated immature neuronal development and increased endogenous cellular proliferation in the damaged brain region. Therefore, a better understanding of the endogenous neural stem cell’s regenerative ability and the effect of exogenous stem cells on proliferation and differentiation ability may help researchers to understand how to increase functional recovery and tissue repair following injury.
Collapse
Affiliation(s)
- Dagnew Getnet Adugna
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| | - Hailu Aragie
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| | - Anteneh Ayelign Kibret
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| | - Daniel Gashaneh Belay
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia.,Department of Epidemiology, Institution of Public Health, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| |
Collapse
|
8
|
Qu M, Xing F, Xing N. Mesenchymal stem cells for the treatment of cognitive impairment caused by neurological diseases. Biotechnol Lett 2022; 44:903-916. [PMID: 35809141 DOI: 10.1007/s10529-022-03274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
Patients with neurological diseases often have cognitive impairment, which creates a substantial emotional and economic burden for patients and their families. This issue urgently needs to be addressed. The pathological mechanism of this cognitive impairment is a complicated process that involves a variety of cells and molecules, central nervous system inflammatory reactions, oxidative stress, free radical damage and nerve protection factor-related metabolic disorders. Traditional treatments include neuroprotective agents and analgesic therapy. However, analgesic therapy cannot improve cognitive function, and the blood-brain barrier (BBB) largely blocks neuroprotective agents from entering the central nervous system; therefore, it is very important to find a more effective treatment. Mesenchymal stem cells (MSCs) have anti-inflammatory, anti-apoptotic and immunomodulatory properties and have been proven to play an important role in the treatment of many neurodegenerative diseases. Most importantly, MSCs are likely to cross the BBB. Therefore, MSC therapy is regarded as an important means of ameliorating neurological impairment. The purpose of this review is to summarize recent researches on the treatment of cognitive dysfunction caused by neurological diseases with MSCs.
Collapse
Affiliation(s)
- Mingcui Qu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
9
|
Secondary Mechanisms of Neurotrauma: A Closer Look at the Evidence. Diseases 2022; 10:diseases10020030. [PMID: 35645251 PMCID: PMC9149951 DOI: 10.3390/diseases10020030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic central nervous system injury is a leading cause of neurological injury worldwide. While initial neuroresuscitative efforts are focused on ameliorating the effects of primary injury through patient stabilization, secondary injury in neurotrauma is a potential cause of cell death, oxidative stress, and neuroinflammation. These secondary injuries lack defined therapy. The major causes of secondary injury in neurotrauma include endoplasmic reticular stress, mitochondrial dysfunction, and the buildup of reactive oxygen or nitrogenous species. Stress to the endoplasmic reticulum in neurotrauma results in the overactivation of the unfolded protein response with subsequent cell apoptosis. Mitochondrial dysfunction can lead to the release of caspases and the buildup of reactive oxygen species; several characteristics make the central nervous system particularly susceptible to oxidative damage. Together, endoplasmic reticulum, mitochondrial, and oxidative stress can have detrimental consequences, beginning moments and lasting days to months after the primary injury. Understanding these causative pathways has led to the proposal of various potential treatment options.
Collapse
|