1
|
Hou Y, Li J, Li X, Lv Y, Yuan C, Tian J, Liu X. Cross-border regulation of the STK39/MAPK14 pathway by Lycium barbarum miR166a to inhibit triple-negative breast cancer. Am J Transl Res 2024; 16:2683-2698. [PMID: 39006277 PMCID: PMC11236659 DOI: 10.62347/aqew8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/01/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE To investigate the effects of Lycium barbarum miRNA166a (Lb-miR166a) on human gene expression regulation during the therapy for triple-negative breast cancer (TNBC). METHODS Transcriptome sequencing was used to analyze the distribution and composition of miRNA in Lycium barbarum fruit. Lb-miR166a was introduced into TNBC MB-231 cells by lentiviral transfection to study its effects on cell proliferation, apoptosis, invasion, and metastasis both in vivo and in vitro. Bioinformatic and dual-luciferase assays identified the target gene of Lb-miR166a. The role of STK39 in TNBC progression was elucidated through clinical data analysis combined with cellular studies. The influence of Lb-miR166a on the STK39/MAPK14 pathway was confirmed using a target-specific knockout MB-231 cell line. RESULTS Lb-miR166a was found to be highly expressed in Lycium barbarum. It inhibited MB-231 cell proliferation, invasion, and metastasis, and promoted apoptosis. STK39 was overexpressed in TNBC and was associated with increased invasiveness and poorer patient prognosis. Gene enrichment analysis and dual-luciferase assays demonstrated that Lb-miR166a regulates STK39 expression cross-border and inhibits MAPK14 phosphorylation, impacting the phosphorylation of downstream target genes. CONCLUSION The downregulation of STK39 and subsequent inhibition of MAPK14 phosphorylation by Lb-miR166a leads to reduced proliferation, migration, and invasion of TNBC cells. These findings suggest a novel therapeutic strategy for TNBC treatment, highlighting possible clinical applications of Lb-miR166a in managing this aggressive cancer type.
Collapse
Affiliation(s)
- Yujin Hou
- Department of Oncology, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia, China
| | - Jing Li
- Department of Special Technical Diagnosis and Treatment, Ning’an HospitalYinchuan, Ningxia, China
| | - Xuan Li
- Department of Oncology, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia, China
| | - Ye Lv
- Department of Oncology, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia, China
| | - Chunxiu Yuan
- Department of Oncology, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia, China
| | - Jia Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical UniversityYinchuan, Ningxia, China
| | - Xinlan Liu
- Department of Medical Oncology, Ningxia Hui Autonomous Region HospitalYinchuan, Ningxia, China
| |
Collapse
|
2
|
Liu X, Sun K, Jin X, Wu X, Xia M, Sun Y, Feng L, Li G, Wan X, Chen C. Review on active components and mechanism of natural product polysaccharides against gastric carcinoma. Heliyon 2024; 10:e27218. [PMID: 38449642 PMCID: PMC10915412 DOI: 10.1016/j.heliyon.2024.e27218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
One of the malignant tumors with a high occurrence rate worldwide is gastric carcinoma, which is an epithelial malignant tumor emerging from the stomach. Natural product polysaccharides are a kind of natural macromolecular polymers, which have the functions of regulating immunity, anti-oxidation, anti-fatigue, hypoglycemia, etc. Natural polysaccharides have remarkable effectiveness in preventing the onset, according to studies, and development of gastric cancer at both cellular and animal levels. This paper summarizes the inhibitory mechanisms and therapeutic significance of plant polysaccharides, fungi polysaccharides, and algal polysaccharides in natural product polysaccharides on the occurrence and development of gastric cancer in recent years, providing a theoretical basis for the research, development, and medicinal value of polysaccharides.
Collapse
Affiliation(s)
- Xinze Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Kaijing Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xinmin Wu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Mingjie Xia
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Ying Sun
- Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lin Feng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Guangzhe Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xilin Wan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Niu X, Yao Y, Li Y, Li C, Pan X, Han L. The role of the ferroptosis pathway in the regulation of polysaccharides for human health: A review. Int J Biol Macromol 2023; 231:123349. [PMID: 36669310 DOI: 10.1016/j.ijbiomac.2023.123349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Polysaccharides are natural polymers with ketone or aldehyde groups that are widely found in plants, animals, and microorganisms. They exhibit various biological activities and have potential development value in the food and pharmaceutical fields. Ferroptosis is a recently discovered modality that modulates cell death and has attracted considerable attention because it is considered to be involved in many pathophysiological processes. The inhibition of ferroptosis by reducing intracellular iron accumulation and lipid peroxidation may provide potential protective strategies against related pathologies. Ferroptosis is also involved in the physiological activities of polysaccharides, and its regulatory mechanism varies according to different physiological activities. However, a systematic summary on the involvement of ferroptosis in the physiological activities of polysaccharides is currently lacking. Therefore, this review systematically summarized the relationship between the physiological activities of polysaccharides and ferroptosis and focused on the regulatory mechanism of ferroptosis, with respect to the anti-cancer, anti-inflammatory, antioxidant, and immunomodulatory activities of all polysaccharides. The primary objective was to find new polysaccharide-related therapeutic breakthroughs for related diseases and to provide a reference for further research on polysaccharides-based therapeutics.
Collapse
Affiliation(s)
- Xiaoyan Niu
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Yupei Yao
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Yaping Li
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Cuiping Li
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Xiao Pan
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Lirong Han
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Zhao Q, Jing YM, He MT, Jing L, Xi YF, Zhang JZ. Lycium Barbarum polysaccharides ameliorates hyperglycemia-exacerbated cerebral ischemia/reperfusion injury via protecting blood-brain barrier. Transpl Immunol 2023; 76:101757. [PMID: 36436794 DOI: 10.1016/j.trim.2022.101757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hyperglycemia exacerbates brain damage in cerebral ischemia/reperfusion injury. Previous study found that Lycium barbarum polysaccharides (LBP) has a neuroprotective effect on hyperglycemia-aggravated ischemic brain injury, which raising the possibility for treatment of neurodegenerative diseases. However, the underlying mechanism of LBP-induced protection by ameliorating hyperglycemia-aggravated ischemia/reperfusion injury needs to be tested. This study aimed to investigate the effects of LBP on blood-brain barrier (BBB) integrity with a hyperglycemia-aggravated cerebral ischemia/reperfusion injury model. METHODS Sprague-Dawley male rats were randomly divided into three groups: normoglycemic (NG), hyperglycemic (HG), and LBP-pretreated hyperglycemic (HG + LBP). Animals underwent middle cerebral artery occlusion (MCAO) for 30 min, followed by 1-, 3-, and 7-day of reperfusion. RESULTS Our results showed that the neurological deficit, infarct volume, cell apoptosis, and IgG leakage in the HG group significantly increased separately, compared with that of the NG group, (p < 0.05). Pre-treatment with LBP reversed these injury indicators (p < 0.05). And much more severe degree of swelling endothelium, swollen astrocyte, and decreased tight junctions in the micro-vessel were detected in the HG group comparing to that of the NG group. In addition, increased degree of basement membrane degradation, dissociation between the astrocyte endfeet and basement membrane, and tight junction's protein degradation was found in the HG group compared with the NG group (p < 0.05). However, when exposure to LBP therapy could reverse the above alterations (p < 0.05). CONCLUSIONS These results demonstrated that LBP could ameliorate hyperglycemia-exacerbated cerebral ischemia/reperfusion injury via protecting the blood-brain barrier.
Collapse
Affiliation(s)
- Qi Zhao
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan 750004, Ningxia, China; Department of Pathology, Shanxi Province Cancer Hospital / Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences / Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, China
| | - Yu-Meng Jing
- Department of Pathology, Shanxi Province Cancer Hospital / Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences / Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, China
| | - Mao-Tao He
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan 750004, Ningxia, China; Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Li Jing
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yan-Feng Xi
- Department of Pathology, Shanxi Province Cancer Hospital / Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences / Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, China.
| | - Jian-Zhong Zhang
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
5
|
Sun L, Zuo C, Liu X, Guo Y, Wang X, Dong Z, Han M. Combined Photothermal Therapy and Lycium barbarum Polysaccharide for Topical Administration to Improve the Efficacy of Doxorubicin in the Treatment of Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14122677. [PMID: 36559180 PMCID: PMC9785128 DOI: 10.3390/pharmaceutics14122677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
In order to improve the efficacy of doxorubicin in the treatment of breast cancer, we constructed a drug delivery system combined with local administration of Lycium barbarum polysaccharides (LBP) and photothermal-material polypyrrole nanoparticles (PPY NPs). In vitro cytotoxicity experiments showed that the inhibitory effect of DOX + LBP + PPY NPs on 4T1 cells under NIR (near infrared) laser was eight times that of DOX at the same concentration (64% vs. 8%). In vivo antitumor experiments showed that the tumor inhibition rate of LBP + DOX + PPY NPs + NIR reached 87.86%. The results of the H&E staining and biochemical assays showed that the systemic toxicity of LBP + DOX + PPY NPs + NIR group was reduced, and liver damage was significantly lower in the combined topical administration group (ALT 54 ± 14.44 vs. 28 ± 3.56; AST 158 ± 16.39 vs. 111 ± 20.85) (p < 0.05). The results of the Elisa assay showed that LBP + DOX + PPY NPs + NIR can enhance efficacy and reduce toxicity (IL-10, IFN-γ, TNF-α, IgA, ROS). In conclusion, LBP + DOX + PPY NPs combined with photothermal therapy can improve the therapeutic effect of DOX on breast cancer and reduce its toxic side effects.
Collapse
Affiliation(s)
- Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Cuiling Zuo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinxin Liu
- Research Center of Pharmaceutical Engineering Technology, Harbin University of Commerce, Harbin 150076, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.D.); (M.H.)
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.D.); (M.H.)
| |
Collapse
|
6
|
The Regulatory Roles of Polysaccharides and Ferroptosis-Related Phytochemicals in Liver Diseases. Nutrients 2022; 14:nu14112303. [PMID: 35684103 PMCID: PMC9182636 DOI: 10.3390/nu14112303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
Liver disease is a global health burden with high morbidity and mortality worldwide. Liver injuries can develop into severe end-stage diseases, such as cirrhosis or hepatocellular carcinoma, without valid treatment. Therefore, identifying novel drugs may promote liver disease treatment. Phytochemicals, including polysaccharides, flavonoids, alkaloids, and terpenes, are abundant in foods and medicinal plants and have various bioactivities, such as antioxidation, immunoregulation, and tumor killing. Recent studies have shown that many natural polysaccharides play protective roles in liver disease models in vitro and in vivo, such as fatty liver disease, alcoholic liver disease, drug-induced liver injury, and liver cancer. The mechanisms of liver disease are complex. Notably, ferroptosis, a new type of cell death driven by iron and lipid peroxidation, is considered to be the key mechanism in many hepatic pathologies. Therefore, polysaccharides and other types of phytochemicals with activities in ferroptosis regulation provide novel therapeutic strategies for ferroptosis-related liver diseases. This review summarizes our current understanding of the mechanisms of ferroptosis and liver injury and compelling preclinical evidence of natural bioactive polysaccharides and phytochemicals in treating liver disease.
Collapse
|