1
|
Wang J, Zhang B, Li L, Tang X, Zeng J, Song Y, Xu C, Zhao K, Liu G, Lu Y, Li X, Shu K. Repetitive traumatic brain injury-induced complement C1-related inflammation impairs long-term hippocampal neurogenesis. Neural Regen Res 2025; 20:821-835. [PMID: 38886955 PMCID: PMC11433904 DOI: 10.4103/nrr.nrr-d-23-01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00027/figure1/v/2024-06-17T092413Z/r/image-tiff Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus, leading to long-term cognitive impairment. However, the mechanism underlying this neurogenesis impairment remains unknown. In this study, we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury. Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development, delayed neuronal maturation, and reduced the complexity of neuronal dendrites and spines. Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval. Moreover, following repetitive traumatic brain injury, neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased, C1q binding protein levels were decreased, and canonical Wnt/β-catenin signaling was downregulated. An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function. These findings suggest that repetitive traumatic brain injury-induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Bing Zhang
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lanfang Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaomei Tang
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jinyu Zeng
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yige Song
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chao Xu
- Department of Graduate Student, Chongqing Medical University, Chongqing, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guoqiang Liu
- Department of Basic Medicine, School of Medical Science, Hubei University for Nationalities, Enshi, Hubei Province, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xinyan Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Vijayakumar Sreelatha H, Palekkodan H, Fasaludeen A, K. Krishnan L, Abelson KSP. Refinement of the motorised laminectomy-assisted rat spinal cord injury model by analgesic treatment. PLoS One 2024; 19:e0294720. [PMID: 38227583 PMCID: PMC10790998 DOI: 10.1371/journal.pone.0294720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/06/2023] [Indexed: 01/18/2024] Open
Abstract
Usage and reporting of analgesia in animal models of spinal cord injury (SCI) have been sparse and requires proper attention. The majority of experimental SCI research uses rats as an animal model. This study aimed to probe into the effects of some commonly used regimens with NSAIDs and opioids on well-being of the rats as well as on the functional outcome of the model. This eight-week study used forty-two female Wistar rats (Crl: WI), randomly and equally divided into 6 treatment groups, viz. I) tramadol (5mg/kg) and buprenorphine (0.05mg/kg); II) carprofen (5mg/kg) and buprenorphine (0.05mg/kg); III) carprofen (5mg/kg); IV) meloxicam (1mg/kg) and buprenorphine (0.05mg/kg); V) meloxicam (1mg/kg); and VI) no analgesia (0.5 ml sterile saline). Buprenorphine was administered twice daily whereas other treatments were given once daily for five days post-operatively. Injections were given subcutaneously. All animals underwent dental burr-assisted laminectomy at the T10-T11 vertebra level. A custom-built calibrated spring-loaded 200 kilodynes force deliverer was used to induce severe SCI. Weekly body weight scores, Rat Grimace Scale (RGS), and dark-phase home cage activity were used as markers for well-being. Weekly Basso Beattie and Bresnahan (BBB) scores served as markers for functionality together with Novel Object Recognition test (NOR) at week 8 and terminal histopathology using area of vacuolisation and live neuronal count from the ventral horns of spinal cord. It was concluded that the usage of analgesia improved animal wellbeing while having no effects on the functional aspects of the animal model in comparison to the animals that received no analgesics.
Collapse
Affiliation(s)
- Harikrishnan Vijayakumar Sreelatha
- Department of Applied Biology, Division of Laboratory Animal Science, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hamza Palekkodan
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Pookot, Wayanad, Kerala, India
| | - Ansar Fasaludeen
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Pookot, Wayanad, Kerala, India
| | - Lissy K. Krishnan
- Biological Research and Innovation Wing, Dr. Moopen’s Medical College, Wayanad, Kerala, India
| | - Klas S. P. Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|