1
|
Bhunia PK, Raj V, Kasturi P. The abundance change of age-regulated secreted proteins affects lifespan of C. elegans. Mech Ageing Dev 2024; 222:112003. [PMID: 39505117 DOI: 10.1016/j.mad.2024.112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Proteome integrity is vital for survival and failure to maintain it results in uncontrolled protein abundances, misfolding and aggregation which cause proteotoxicity. In multicellular organisms, proteotoxic stress is communicated among tissues to maintain proteome integrity for organismal stress resistance and survival. However, the nature of these signalling molecules and their regulation in extracellular space is largely unknown. Secreted proteins are induced in response to various stresses and aging, indicating their roles in inter-tissue communication. To study the fates of age-regulated proteins with potential localization to extracellular, we analysed publicly available age-related proteome data of C. elegans. We found that abundance of majority of the proteins with signal peptides (SP) increases with age, which might result in their supersaturation and subsequent aggregation. Intriguingly, these changes are differentially regulated in the lifespan mutants. A subset of these SP proteins is also found in the cargo of extracellular vesicles. Many of these proteins are novel and functionally uncharacterized. Reducing levels of a few extracellular proteins results in increasing lifespan. This suggests that uncontrolled levels of extracellular proteins might disturb proteostasis and limit the lifespan. Overall, our findings suggest that the age-induced secreted proteins might be the potential candidates to be considered as biomarkers or for mitigating age-related pathological conditions.
Collapse
Affiliation(s)
- Prasun Kumar Bhunia
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Vishwajeet Raj
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Prasad Kasturi
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India.
| |
Collapse
|
2
|
Mitias S, Schaffer N, Nair S, Hook C, Lindberg I. ProSAAS is preferentially up-regulated during homeostatic scaling and reduces amyloid plaque burden in the 5xFAD mouse hippocampus. J Neurochem 2024; 168:3235-3249. [PMID: 39115041 PMCID: PMC11449639 DOI: 10.1111/jnc.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/21/2024]
Abstract
The accumulation of β-amyloid in Alzheimer's disease greatly impacts neuronal health and synaptic function. To maintain network stability in the face of altered synaptic activity, neurons engage a feedback mechanism termed homeostatic scaling; however, this process is thought to be disrupted during disease progression. Previous proteomics studies have shown that one of the most highly regulated proteins in cell culture models of homeostatic scaling is the small secretory chaperone proSAAS. Our prior work has shown that proSAAS exhibits anti-aggregant behavior against alpha-synuclein and β-amyloid fibrillation in vitro and is up-regulated in cell models of proteostatic stress. However, the specific role that this protein might play in homeostatic scaling, and its anti-aggregant role in Alzheimer's progression, is not clear. To learn more about the role of proSAAS in maintaining hippocampal proteostasis, we compared its expression in a primary neuron model of homeostatic scaling to other synaptic components using western blotting and qPCR, revealing that proSAAS protein responses to homeostatic up- and down-regulation were significantly higher than those of two other synaptic vesicle components, 7B2 and carboxypeptidase E. However, proSAAS mRNA expression was static, suggesting translational control and/or altered protein degradation. ProSAAS was readily released upon depolarization of differentiated hippocampal cultures, supporting its synaptic localization. Immunohistochemical analysis demonstrated abundant proSAAS within the mossy fiber layer of the hippocampus in both wild-type and 5xFAD mice; in the latter, proSAAS was also concentrated around amyloid plaques. Importantly, overexpression of proSAAS in the CA1 region via stereotaxic injection of proSAAS-encoding AAV2/1 significantly decreased amyloid plaque burden in 5xFAD mice. We hypothesize that dynamic changes in proSAAS expression play a critical role in hippocampal proteostatic processes, both in the context of normal homeostatic plasticity and in the control of protein aggregation during Alzheimer's disease progression.
Collapse
Affiliation(s)
- Samira Mitias
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Nicholas Schaffer
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Saaya Nair
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Chelsea Hook
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Iris Lindberg
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Puig N, Rives J, Gil-Millan P, Miñambres I, Ginel A, Tauron M, Bonaterra-Pastra A, Hernández-Guillamon M, Pérez A, Sánchez-Quesada JL, Benitez S. Apolipoprotein J protects cardiomyocytes from lipid-mediated inflammation and cytotoxicity induced by the epicardial adipose tissue of diabetic patients. Biomed Pharmacother 2024; 175:116779. [PMID: 38776681 DOI: 10.1016/j.biopha.2024.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic patients present increased volume and functional alterations in epicardial adipose tissue (EAT). We aimed to analyze EAT from type 2 diabetic patients and the inflammatory and cytotoxic effects induced on cardiomyocytes. Furthermore, we analyzed the cardioprotective role of apolipoprotein J (apoJ). EAT explants were obtained from nondiabetic patients (ND), diabetic patients without coronary disease (DM), and DM patients with coronary disease (DM-C) after heart surgery. Morphological characteristics and gene expression were evaluated. Explants were cultured for 24 h and the content of nonesterified fatty acids (NEFA) and sphingolipid species in secretomes was evaluated by lipidomic analysis. Afterwards, secretomes were added to AC16 human cardiomyocytes for 24 h in the presence or absence of cardioprotective molecules (apoJ and HDL). Cytokine release and apoptosis/necrosis were assessed by ELISA and flow cytometry. The EAT from the diabetic samples showed altered expression of genes related to lipid accumulation, insulin resistance, and inflammation. The secretomes from the DM samples presented an increased ratio of pro/antiatherogenic ceramide (Cer) species, while those from DM-C contained the highest concentration of saturated NEFA. DM and DM-C secretomes promoted inflammation and cytotoxicity on AC16 cardiomyocytes. Exogenous Cer16:0, Cer24:1, and palmitic acid reproduced deleterious effects in AC16 cells. These effects were attenuated by exogenous apoJ. Diabetic secretomes promoted inflammation and cytotoxicity in cardiomyocytes. This effect was exacerbated in the secretomes of the DM-C samples. The increased content of specific NEFA and ceramide species seems to play a key role in inducing such deleterious effects, which are attenuated by apoJ.
Collapse
Affiliation(s)
- Núria Puig
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - José Rives
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Pedro Gil-Millan
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Inka Miñambres
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Antonino Ginel
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Manel Tauron
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, and IR-Sant Pau, Barcelona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Pérez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - José Luís Sánchez-Quesada
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.
| | - Sonia Benitez
- Cardiovascular Biochemistry, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.
| |
Collapse
|
4
|
Mitias S, Schaffer N, Nair S, Hook C, Lindberg I. ProSAAS is Preferentially Secreted from Neurons During Homeostatic Scaling and Reduces Amyloid Plaque Size in the 5xFAD Mouse Hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590133. [PMID: 38712265 PMCID: PMC11071301 DOI: 10.1101/2024.04.18.590133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The accumulation of β-amyloid in Alzheimer's disease greatly impacts neuronal health and synaptic function. To maintain network stability in the face of altered synaptic activity, neurons engage a feedback mechanism termed homeostatic scaling; however, this process is thought to be disrupted during disease progression. Previous proteomics studies have shown that one of the most highly regulated proteins in cell culture models of homeostatic scaling is the small secretory chaperone proSAAS. Our prior work has shown that proSAAS exhibits anti-aggregant behavior against alpha synuclein and β-amyloid fibrillation in vitro, and is upregulated in cell models of proteostatic stress. However, the specific role that this protein might play in homeostatic scaling, and its anti-aggregant role in Alzheimer's progression, is not clear. To learn more about the role of proSAAS in maintaining hippocampal proteostasis, we compared its expression in a primary neuron model of homeostatic scaling to other synaptic components using Western blotting and qPCR, revealing that proSAAS protein responses to homeostatic up- and down-regulation were significantly higher than those of two other synaptic vesicle components, 7B2 and carboxypeptidase E. However, proSAAS mRNA expression was static, suggesting translational control (and/or reduced degradation). ProSAAS was readily released upon depolarization of differentiated hippocampal cultures, supporting its synaptic localization. Immunohistochemical analysis demonstrated abundant proSAAS within the mossy fiber layer of the hippocampus in both wild-type and 5xFAD mice; in the latter, proSAAS was also concentrated around amyloid plaques. Interestingly, overexpression of proSAAS in the CA1 region via stereotaxic injection of proSAAS-encoding AAV2/1 significantly decreased amyloid plaque burden in 5xFAD mice. We hypothesize that dynamic changes in proSAAS expression play a critical role in hippocampal proteostatic processes, both in the context of normal homeostatic plasticity and in the control of protein aggregation during Alzheimer's disease progression.
Collapse
Affiliation(s)
- Samira Mitias
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Nicholas Schaffer
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Saaya Nair
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Chelsea Hook
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Iris Lindberg
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
López Malizia A, Merlotti A, Bonte PE, Sager M, Arribas De Sandoval Y, Goudot C, Erra Díaz F, Pereyra-Gerber P, Ceballos A, Amigorena S, Geffner J, Sabatte J. Clusterin protects mature dendritic cells from reactive oxygen species mediated cell death. Oncoimmunology 2023; 13:2294564. [PMID: 38125724 PMCID: PMC10730137 DOI: 10.1080/2162402x.2023.2294564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Dendritic cells (DCs) play a key role in the induction of the adaptive immune response. They capture antigens in peripheral tissues and prime naïve T lymphocytes, triggering the adaptive immune response. In the course of inflammatory processes DCs face stressful conditions including hypoxia, low pH and high concentrations of reactive oxygen species (ROS), among others. How DCs survive under these adverse conditions remain poorly understood. Clusterin is a protein highly expressed by tumors and usually associated with bad prognosis. It promotes cancer cell survival by different mechanisms such as apoptosis inhibition and promotion of autophagy. Here, we show that, upon maturation, human monocyte-derived DCs (MoDCs) up-regulate clusterin expression. Clusterin protects MoDCs from ROS-mediated toxicity, enhancing DC survival and promoting their ability to induce T cell activation. In line with these results, we found that clusterin is expressed by a population of mature LAMP3+ DCs, called mregDCs, but not by immature DCs in human cancer. The expression of clusterin by intratumoral DCs was shown to be associated with a transcriptomic profile indicative of cellular response to stress. These results uncover an important role for clusterin in DC physiology.
Collapse
Affiliation(s)
- Alvaro López Malizia
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | | | | | - Melina Sager
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | | | - Christel Goudot
- Institut Curie, Université Paris Sciences et Lettres, Paris, France
| | - Fernando Erra Díaz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | - Pehuén Pereyra-Gerber
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ana Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | | | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | - Juan Sabatte
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| |
Collapse
|
6
|
The Emerging Roles of Extracellular Chaperones in Complement Regulation. Cells 2022; 11:cells11233907. [PMID: 36497163 PMCID: PMC9738919 DOI: 10.3390/cells11233907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The immune system is essential to protect organisms from internal and external threats. The rapidly acting, non-specific innate immune system includes complement, which initiates an inflammatory cascade and can form pores in the membranes of target cells to induce cell lysis. Regulation of protein homeostasis (proteostasis) is essential for normal cellular and organismal function, and has been implicated in processes controlling immunity and infection. Chaperones are key players in maintaining proteostasis in both the intra- and extracellular environments. Whilst intracellular proteostasis is well-characterised, the role of constitutively secreted extracellular chaperones (ECs) is less well understood. ECs may interact with invading pathogens, and elements of the subsequent immune response, including the complement pathway. Both ECs and complement can influence the progression of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis, as well as other diseases including kidney diseases and diabetes. This review will examine known and recently discovered ECs, and their roles in immunity, with a specific focus on the complement pathway.
Collapse
|