1
|
Zhou H, Yang RK, Li Q, Li Z, Wang YC, Li SY, Miao Y, Sun XH, Wang Z. MicroRNA-146a-5p protects retinal ganglion cells through reducing neuroinflammation in experimental glaucoma. Glia 2024; 72:2115-2141. [PMID: 39041109 DOI: 10.1002/glia.24600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Neuroinflammation plays important roles in retinal ganglion cell (RGC) degeneration in glaucoma. MicroRNA-146 (miR-146) has been shown to regulate inflammatory response in neurodegenerative diseases. In this study, whether and how miR-146 could affect RGC injury in chronic ocular hypertension (COH) experimental glaucoma were investigated. We showed that in the members of miR-146 family only miR-146a-5p expression was upregulated in COH retinas. The upregulation of miR-146a-5p was observed in the activated microglia and Müller cells both in primary cultured conditions and in COH retinas, but mainly occurred in microglia. Overexpression of miR-146a-5p in COH retinas reduced the levels pro-inflammatory cytokines and upregulated the levels of anti-inflammatory cytokines, which were further confirmed in the activated primary cultured microglia. Transfection of miR-146a-5p mimic increased the percentage of anti-inflammatory phenotype in the activated BV2 microglia, while transfection of miR-146a-5p inhibitor resulted in the opposite effects. Transfection of miR-146a-5p mimic/agomir inhibited the levels of interleukin-1 receptor associated kinase (IRAK1) and TNF receptor associated factor 6 (TRAF6) and phosphorylated NF-κB subunit p65. Dual luciferase reporter gene assay confirmed that miR-146a-5p could directly target IRAK1 and TRAF6. Moreover, downregulation of IRAK1 and TRAF6 by siRNA techniques or blocking NF-κB by SN50 in cultured microglia reversed the miR-146a-5p inhibitor-induced changes of inflammatory cytokines. In COH retinas, overexpression of miR-146a-5p reduced RGC apoptosis, increased RGC survival, and partially rescued the amplitudes of photopic negative response. Our results demonstrate that overexpression of miR-146a-5p attenuates RGC injury in glaucoma by reducing neuroinflammation through downregulating IRAK1/TRAF6/NF-κB signaling pathway in microglia.
Collapse
Affiliation(s)
- Han Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rui-Kang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qian Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhen Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Chen Wang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Shu-Ying Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xing-Huai Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zhu Y, Li SY, Zhang LJ, Lei B, Wang YC, Wang Z. Neuroprotection of the P2X7 receptor antagonist A740003 on retinal ganglion cells in experimental glaucoma. Neuroreport 2024; 35:822-831. [PMID: 38973496 DOI: 10.1097/wnr.0000000000002071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The aim of this study was to explore the neuroprotective effects of the P2X7 receptor antagonist A740003 on retinal ganglion cells (RGCs) in chronic intraocular hypertension (COH) experimental glaucoma mouse model. Bioinformatics was used to analyze the glaucoma-related genes. Western blot, real-time fluorescence quantitative PCR, and immunofluorescence staining techniques were employed to explore the mechanisms underlying the neuroprotective effects of A740003 on RGCs in COH retinas. Bioinformatic analysis revealed that oxidative stress, neuroinflammation, and cell apoptosis were highly related to the pathogenesis of glaucoma. In COH retinas, intraocular pressure elevation significantly increased the levels of translocator protein, a marker of microglial activation, which could be reversed by intravitreal preinjection of A740003. A740003 also suppressed the increased mRNA levels of proinflammatory cytokines interleukin (IL) 1β and tumor necrosis factor α in COH retinas. In addition, although the mRNA levels of anti-inflammatory cytokine IL-4 and IL-10 were kept unchanged in COH retinas, administration of A740003 could increase their levels. The mRNA and protein levels of Bax and cleaved caspase-3 were increased in COH retinas, which could be partially reversed by A740003, while the levels of Bcl-2 kept unchanged in COH retinas with or without the injections of A740003. Furthermore, A740003 partially attenuated the reduction in the numbers of Brn-3a-positive RGCs in COH mice. A740003 could provide neuroprotective roles on RGCs by inhibiting the microglia activation, attenuating the retinal inflammatory response, reducing the apoptosis of RGCs, and enhancing the survival of RGCs in COH experimental glaucoma.
Collapse
Affiliation(s)
- Yan Zhu
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
| | - Shu-Ying Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai
| | - Lu-Jia Zhang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
| | - Bo Lei
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
- Henan Eye Institute, Henan Eye Hospital, Henan Academy of Innovations in Medical Science, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yong-Chen Wang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
| | - Zhongfeng Wang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai
| |
Collapse
|
3
|
Zhang Y, Zhang C, Yi X, Wang Q, Zhang T, Li Y. Gabapentinoids for the treatment of stroke. Neural Regen Res 2024; 19:1509-1516. [PMID: 38051893 PMCID: PMC10883501 DOI: 10.4103/1673-5374.387968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/04/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Gabapentinoid drugs (pregabalin and gabapentin) have been successfully used in the treatment of neuropathic pain and in focal seizure prevention. Recent research has demonstrated their potent activities in modulating neurotransmitter release in neuronal tissue, oxidative stress, and inflammation, which matches the mechanism of action via voltage-gated calcium channels. In this review, we briefly elaborate on the medicinal history and ligand-binding sites of gabapentinoids. We systematically summarize the preclinical and clinical research on gabapentinoids in stroke, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, seizures after stroke, cortical spreading depolarization after stroke, pain after stroke, and nerve regeneration after stroke. This review also discusses the potential targets of gabapentinoids in stroke; however, the existing results are still uncertain regarding the effect of gabapentinoids on stroke and related diseases. Further preclinical and clinical trials are needed to test the therapeutic potential of gabapentinoids in stroke. Therefore, gabapentinoids have both opportunities and challenges in the treatment of stroke.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Wang X, Lin Q, Liu S, Li X, Kong X, Wang Y, Ten W, Huang Y, Yang Y, Zhao J, Ma X, Zhou X. LncRNA-XR_002792574.1-mediated ceRNA network reveals potential biomarkers in myopia-induced retinal ganglion cell damage. J Transl Med 2023; 21:785. [PMID: 37932794 PMCID: PMC10629108 DOI: 10.1186/s12967-023-04662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play a key role in the occurrence and progression of myopia. However, the function of lncRNAs in retinal ganglion cells (RGCs) in the pathogenesis of myopia is still unknown. The aim of our study was to explore the lncRNA-mediated competing endogenous RNA (ceRNA) network in RGCs during the development of myopia. METHODS RNA sequencing was performed to analyze lncRNA and mRNA expression profiles in RGCs between guinea pigs with form-deprived myopia (FDM) and normal control guinea pigs, and related ceRNA networks were constructed. Then, potentially important genes in ceRNA networks were verified by qRT‒PCR, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to explore biological functions in the RGCs of FDM guinea pigs. The important genes and related signaling pathways were further verified by qRT‒PCR, immunohistochemistry, immunofluorescence and Western blot in myopia in FDM guinea pigs, FDM mice, and highly myopic adults. RESULTS The distribution of RGCs was uneven, the number of RGCs was decreased, and RGC apoptosis was increased in FDM guinea pigs. In total, 873 lncRNAs and 2480 mRNAs were determined to be differentially expressed genes in RGCs from normal control and FDM guinea pigs. Via lncRNA-mediated ceRNA network construction and PCR verification, we found that lncRNA-XR_002792574.1 may be involved in the development of myopia through the miR-760-3p/Adcy1 pathway in RGCs. Further verification in FDM guinea pigs, FDM mice, and highly myopic adults demonstrated that the lncRNA-XR_002792574.1/miR-760-3p/Adcy1 axis in RGCs might be related to cGMP/PKG, the apelin signaling pathway and scleral remodeling. CONCLUSION We demonstrated that the lncRNA-XR_002792574.1/miR-760-3p/Adcy1 axis in RGCs might be related to myopia. On the one hand, the lncRNA-XR_002792574.1/miR-760-3p/Adcy1 axis might inhibit the cGMP/PKG and apelin signaling pathways in RGCs, thereby causing RGC damage in myopia. On the other hand, the lncRNA-XR_002792574.1/miR-760-3p/Adcy1 axis may cause myopic scleral remodeling through the ERK-MMP-2 pathway. These findings may reveal novel potential targets in myopia and provide reference value for exploration and development of gene editing therapeutics for hereditary myopia.
Collapse
Affiliation(s)
- Xuejun Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Qinghong Lin
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Shengtao Liu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiehe Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuliang Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Weijung Ten
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yangyi Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yanting Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
| | - Xiaopeng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
| |
Collapse
|
5
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|