1
|
Liu T, Zhang L, Mei W. CTRP9 attenuates peripheral nerve injury-induced mechanical allodynia and thermal hyperalgesia through regulating spinal microglial polarization and neuroinflammation mediated by AdipoR1 in male mice. Cell Biol Toxicol 2024; 40:91. [PMID: 39460844 PMCID: PMC11512844 DOI: 10.1007/s10565-024-09933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Peripheral nerve injury triggers rapid microglial activation, promoting M1 polarization within the spinal cord, which exacerbates the progression of neuropathic pain. C1q/TNF-related protein 9 (CTRP9), an adiponectin homolog, is known to suppress macrophage activation and exhibit anti-inflammatory properties through the activation of adiponectin receptor 1 (AdipoR1) in various disease contexts. Nevertheless, the involvement of CTRP9 in microglial polarization in the context of neuropathic pain is still unclear. Our study aimed to how CTRP9 influences spinal microglial polarization, neuroinflammation, and pain hypersensitivity, as well as the underlying mechanism, using a neuropathic pain model in male mice with spared nerve injury (SNI) of sciatic nerve. Our findings revealed SNI elevated the spinal CTRP9 and AdipoR1 levels in microglia. Furthermore, intrathecal administration of recombinant CTRP9 (rCTRP9) substantially weakened mechanical hypersensitivity and heat-related pain response triggered by SNI. On the other hand, rCTRP9 mediated a phenotypic switch in microglia, from the pro-inflammatory M1 state to the anti-inflammatory M2 state, by influencing the spinal AMPK/NF-κB mechanism in SNI mice. Additionally, treatment with AdipoR1 siRNA or an AMPK-specific antagonist both reversed the effects of CTRP9 on the phenotypic switching of spinal microglia and pain hypersensitivity. Collectively, these results indicate that CTRP9 ameliorates mechanical hypersensitivity and heat-related pain response, shifted the balance of microglia towards the anti-inflammatory M2 state, and suppresses neuroinflammatory responses by modulating the AMPK/NF-κB pathway, mediated by AdipoR1 activation, in mice with SNI.
Collapse
Affiliation(s)
- Tianzhu Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Longqing Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
2
|
Zhang L, Dai X, Li D, Wu J, Gao S, Song F, Liu L, Zhou Y, Liu D, Mei W. MFG-E8 Ameliorates Nerve Injury-Induced Neuropathic Pain by Regulating Microglial Polarization and Neuroinflammation via Integrin β3/SOCS3/STAT3 Pathway in Mice. J Neuroimmune Pharmacol 2024; 19:49. [PMID: 39305375 DOI: 10.1007/s11481-024-10150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Spinal microglial polarization plays a crucial role in the pathological processes of neuropathic pain following peripheral nerve injury. Accumulating evidence suggests that milk fat globule epidermal growth factor-8 (MFG-E8) exhibits anti-inflammatory effect and regulates microglial polarization through the integrin β3 receptor. However, the impact of MFG-E8 on microglial polarization in the context of neuropathic pain has not yet been investigated. In this study, we evaluated the effect of MFG-E8 on pain hypersensitivity and spinal microglial polarization following spared nerve injury (SNI) of the sciatic nerve in mice. We determined the molecular mechanisms underlying the effects of MFG-E8 on pain hypersensitivity and spinal microglial polarization using pain behavior assessment, western blot (WB) analysis, immunofluorescence (IF) staining, quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and small interfering RNA (siRNA) transfection. Our findings indicate that SNI significantly increased the levels of MFG-E8 and integrin β3 expressed in microglia within the spinal cord of mice. Additionally, we observed that intrathecal injection of recombinant human MFG-E8 (rhMFG-E8) alleviated SNI induced-mechanical allodynia and thermal hyperalgesia. Furthermore, the results suggested that rhMFG-E8 facilitated M2 microglial polarization and ameliorated neuroinflammation via integrin β3/SOCS3/STAT3 pathway in the spinal cord of mice with SNI. Importantly, these effects were negated by integrin β3 siRNA, or SOCS3 siRNA. These results demonstrate that MFG-E8 ameliorates peripheral nerve injury induced-mechanical allodynia and thermal hyperalgesia by driving M2 microglial polarization and mitigating neuroinflammation mediated by integrin β3/SOCS3/STAT3 pathway in the spinal cord of mice. MFG-E8 may serve as a promising target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Longqing Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xinyi Dai
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Jiayi Wu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Shaojie Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fanhe Song
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yaqun Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Daiqiang Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
3
|
Zhang L, Liu L, Li D, Wu J, Gao S, Song F, Zhou Y, Liu D, Mei W. Heat Shock Protein 22 Attenuates Nerve Injury-induced Neuropathic Pain Via Improving Mitochondrial Biogenesis and Reducing Oxidative Stress Mediated By Spinal AMPK/PGC-1α Pathway in Male Rats. J Neuroimmune Pharmacol 2024; 19:5. [PMID: 38319409 DOI: 10.1007/s11481-024-10100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/14/2023] [Indexed: 02/07/2024]
Abstract
Heat shock protein 22 (hsp22) plays a significant role in mitochondrial biogenesis and redox balance. Moreover, it's well accepted that the impairment of mitochondrial biogenesis and redox imbalance contributes to the progress of neuropathic pain. However, there is no available evidence indicating that hsp22 can ameliorate mechanical allodynia and thermal hyperalgesia, sustain mitochondrial biogenesis and redox balance in rats with neuropathic pain. In this study, pain behavioral test, western blotting, immunofluorescence staining, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Dihydroethidium staining are applied to confirm the role of hsp22 in a male rat model of spared nerve injury (SNI). Our results indicate that hsp22 was significantly decreased in spinal neurons post SNI. Moreover, it was found that intrathecal injection (i.t.) with recombinant heat shock protein 22 protein (rhsp22) ameliorated mechanical allodynia and thermal hyperalgesia, facilitated nuclear respiratory factor 1 (NRF1)/ mitochondrial transcription factor A (TFAM)-dependent mitochondrial biogenesis, decreased the level of reactive oxygen species (ROS), and suppressed oxidative stress via activation of spinal adenosine 5'monophosphate-activated protein kinase (AMPK)/ peroxisome proliferative activated receptor γ coactivator 1α (PGC-1α) pathway in male rats with SNI. Furthermore, it was also demonstrated that AMPK antagonist (compound C, CC) or PGC-1α siRNA reversed the improved mechanical allodynia and thermal hyperalgesia, mitochondrial biogenesis, oxidative stress, and the decreased ROS induced by rhsp22 in male rats with SNI. These results revealed that hsp22 alleviated mechanical allodynia and thermal hyperalgesia, improved the impairment of NRF1/TFAM-dependent mitochondrial biogenesis, down-regulated the level of ROS, and mitigated oxidative stress through stimulating the spinal AMPK/PGC-1α pathway in male rats with SNI.
Collapse
Affiliation(s)
- Longqing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiayi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shaojie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fanhe Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Daiqiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
4
|
Doboszewska U, Maret W, Wlaź P. GPR39: An orphan receptor begging for ligands. Drug Discov Today 2024; 29:103861. [PMID: 38122967 DOI: 10.1016/j.drudis.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Progress in the understanding of the receptor GPR39 is held up by inconsistent pharmacological data. First, the endogenous ligand(s) remain(s) contentious. Data pointing to zinc ions (Zn2+) and/or eicosanoids as endogenous ligands are a matter of debate. Second, there are uncertainties in the specificity of the widely used synthetic ligand (agonist) TC-G 1008. Third, activation of GPR39 has been often proposed as a novel treatment strategy, but new data also support that inhibition might be beneficial in certain disease contexts. Constitutive activity/promiscuous signaling suggests the need for antagonists/inverse agonists in addition to (biased) agonists. Here, we scrutinize data on the signaling and functions of GPR39 and critically assess factors that might have contributed to divergent outcomes and interpretations of investigations on this important receptor.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Wolfgang Maret
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
5
|
Zhang L, Sunchen S, Lu C, Xu F, Dong H. Zinc-sensing receptor activation induces endothelium-dependent hyperpolarization-mediated vasorelaxation of arterioles. Biochem Pharmacol 2024; 219:115961. [PMID: 38049010 DOI: 10.1016/j.bcp.2023.115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND The micronutrient zinc (Zn2+) is critical for cell function as intracellular signaling and endogenous ligand for Zn2+ sensing receptor (ZnR). Although cytosolic Zn2+ (cyt) signaling in the vascular system was studied previously, role of the ZnR has not been explored in vascular physiology. METHODS ZnR-mediated relaxation response of human submucosal arterioles and the mesenteric arterioles from wide-type (WT), ZnR-/- and TRPV4-/- mice were determined by a Mulvany-style wire myograph. The perfused vessel density (PVD) of mouse mesenteric arterioles was also measured in in vivo study. The expression of ZnR in arterioles and vascular endothelial cells (VEC) were examined by immunofluorescence staining, and its function was characterized in VEC by Ca2+ imaging and patch clamp study. RESULTS ZnR expression was detected on human submucosal arterioles, murine mesenteric arterioles and VEC but not in ZnR-/- mice. ZnR activation predominately induced endothelium-dependent hyperpolarization (EDH)-mediated vasorelaxation of arterioles in vitro and in vivo via Ca2+ signaling, which is totally different from endothelium-dependent vasorelaxation via Zn2+ (cyt) signaling reported previously. Furthermore, ZnR-induced vasorelaxation via EDH was significantly impaired in ZnR-/- and TRPV4-/- mice. Mechanistically, ZnR induced endothelium-dependent vasorelaxation predominately via PLC/IP3/IP3R and TRPV4/SOCE. The role of ZnR in regulating Ca2+ signaling and ion channels on VEC was verified by Ca2+ imaging and patch clamp techniques. CONCLUSION ZnR activation induces endothelium-dependent vasorelaxation of resistance vessels predominately via TRPV4/Ca2+/EDH pathway. We therefore not only provide new insights into physiological role of ZnR in vascular system but also may pave a potential pathway for developing Zn2+-based treatments for vascular disease.
Collapse
Affiliation(s)
- Luyun Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400037, China; Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Sijin Sunchen
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400037, China.
| | - Hui Dong
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400037, China; Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|