1
|
Edwards S, Foster M, Ahmed SF, Lucas-Herald AK. Preventative interventions that target cardiovascular dysfunction in children and young people: a systematic review of their effectiveness and an investigation of sexual dimorphism. J Hum Hypertens 2023; 37:726-734. [PMID: 36463360 PMCID: PMC10403341 DOI: 10.1038/s41371-022-00780-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/07/2022]
Abstract
Given that cardiovascular diseases remain a primary cause of mortality and morbidity, there is a need to consider preventative strategies to improve vascular function from early in life. The aims of this study were therefore to investigate which interventions may improve endothelial function, intima media thickness and arterial stiffness in children and young people and to assess whether these interventions differ in boys and girls. A systematic literature search of Science Direct, Pubmed, Google Scholar and the Cochrane Library by two independent reviewers was performed to source articles. Inclusion criteria were any studies including any child ≤18 years of age receiving an intervention, which measured vascular function other than blood pressure. Exclusion criteria were studies assessing children with chronic medical conditions. A total of 72 studies were identified, which met the inclusion criteria. A measurable change in outcome was more likely to be reported in studies investigating endothelial function (p = 0.03). Interventions which improved vascular function included physical activity and dietary programmes. Under 10% of studies considered sex differences. In conclusion, school-based physical activity interventions are most likely to result in improvements in vascular function. Endothelial function may be the first variable of vascular function to change secondary to an intervention. Standardisation of reporting of differences between the sexes is essential to be able to ensure interventions are equally effective for boys and girls.
Collapse
Affiliation(s)
- Sophie Edwards
- Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Children, Glasgow, UK
| | - Murray Foster
- Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Children, Glasgow, UK
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Children, Glasgow, UK
| | - Angela K Lucas-Herald
- Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Children, Glasgow, UK.
| |
Collapse
|
2
|
Shcheblykin DV, Bolgov AA, Pokrovskii MV, Stepenko JV, Tsuverkalova JM, Shcheblykina OV, Golubinskaya PA, Korokina LV. Endothelial dysfunction: developmental mechanisms and therapeutic strategies. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.80376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Every year the importance of the normal functioning of the endothelial layer of the vascular wall in maintaining the health of the body becomes more and more obvious.
The physiological role of the endothelium: The endothelium is a metabolically active organ actively involved in the regulation of hemostasis, modulation of inflammation, maintenance of hemovascular homeostasis, regulation of angiogenesis, vascular tone, and permeability.
Risk factors for the development of endothelial dysfunction: Currently, insufficient bioavailability of nitric oxide is considered the most significant risk factor for endothelial dysfunction.
Mechanisms of development of endothelial dysfunction: The genesis of endothelial dysfunction is a multifactorial process. Among various complex mechanisms, this review examines oxidative stress, inflammation, hyperglycemia, vitamin D deficiency, dyslipidemia, excess visceral fat, hyperhomocysteinemia, hyperuricemia, as well as primary genetic defect of endotheliocytes, as the most common causes in the population underlying the development of endothelial dysfunction.
Markers of endothelial dysfunction in various diseases: This article discusses the main biomarkers of endothelial dysfunction currently used, as well as promising biomarkers in the future for laboratory diagnosis of this pathology.
Therapeutic strategies: Therapeutic approaches to the endothelium in order to prevent or reduce a degree of damage to the vascular wall are briefly described.
Conclusion: Endothelial dysfunction is a typical pathological process involved in the pathogenesis of many diseases. Thus, pharmacological agents with endothelioprotective properties can provide more therapeutic benefits than a drug without such an effect.
Collapse
|
3
|
Ganesh S, Zhong P, Zhou X. Cardiotoxicity induced by immune checkpoint inhibitor: The complete insight into mechanisms, monitoring, diagnosis, and treatment. Front Cardiovasc Med 2022; 9:997660. [PMID: 36204564 PMCID: PMC9530557 DOI: 10.3389/fcvm.2022.997660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been taking cancer research by storm as they provide valuable therapeutic benefits to cancer patients in terms of immunotherapy. Melanoma and non-small cell lung cancer (NSCLC) are among the most prevalent cancer varieties that were utilized in ICI trials with many other cancer types being involved too. Despite impressive clinical benefits of overall response rate (ORR), progression-free survival (PFS), etc., ICIs are also accompanied by various immune-related adverse events (irAEs). Amongst the irAEs, cardiotoxicity bags a crucial role. It is of paramount importance that ICI-induced cardiotoxicity should be studied in detail due to its high mortality rate although the prevalence rate is low. Patients with ICI cardiotoxicity can have a greatly enhanced life quality despite adverse reactions from ICI therapy if diagnosed early and treated in time. As such, this review serves to provide a complete insight into the predisposing factors, mechanism, diagnostic methods and treatment plans revolving around ICI-induced cardiotoxicity.
Collapse
|
4
|
Hemilä H, Chalker E, de Man AME. Vitamin C May Improve Left Ventricular Ejection Fraction: A Meta-Analysis. Front Cardiovasc Med 2022; 9:789729. [PMID: 35282368 PMCID: PMC8913583 DOI: 10.3389/fcvm.2022.789729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/21/2022] [Indexed: 01/02/2023] Open
Abstract
Background Vitamin C deprivation can lead to fatigue, dyspnea, oedema and chest pain, which are also symptoms of heart failure (HF). In animal studies vitamin C has improved contractility and mechanical efficiency of the heart. Compared with healthy people, patients with HF have lower vitamin C levels, which are not explained by differences in dietary intake levels, and more severe HF seems to be associated with lower plasma vitamin C levels. This meta-analysis looks at the effect of vitamin C on left ventricular ejection fraction (LVEF). Methods We searched for trials reporting the effects of vitamin C on LVEF. We assessed the quality of the trials, and pooled selected trials using the inverse variance, fixed effect options. We used meta-regression to examine the association between the effect of vitamin C on LVEF level and the baseline LVEF level. Results We identified 15 trials, three of which were excluded from our meta-analysis. In six cardiac trials with 246 patients, vitamin C increased LVEF on average by 12.0% (95% CI 8.1–15.9%; P < 0.001). In six non-cardiac trials including 177 participants, vitamin C increased LVEF on average by 5.3% (95% CI 2.0–8.5%; P = 0.001). In meta-regression analysis we found that the effect of vitamin C was larger in trials with the lowest baseline LVEF levels with P = 0.001 for the test of slope. The meta-regression line crossed the null effect level at a baseline LVEF level close to 70%, with progressively greater benefit from vitamin C with lower LVEF levels. Some of the included trials had methodological limitations. In a sensitivity analysis including only the four most methodologically sound cardiac trials, the effect of vitamin C was not substantially changed. Conclusions In this meta-analysis, vitamin C increased LVEF in both cardiac and non-cardiac patients, with a strong negative association between the size of the vitamin C effect and the baseline LVEF. Further research on vitamin C and HF should be carried out, particularly in patients who have low LVEF together with low vitamin C intake or low plasma levels. Different dosages and different routes of administration should be compared.
Collapse
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, Helsinki, Finland
- *Correspondence: Harri Hemilä
| | - Elizabeth Chalker
- Biological Data Science Institute, Australian National University, Canberra, ACT, Australia
| | - Angelique M. E. de Man
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
5
|
Berretta M, Quagliariello V, Maurea N, Di Francia R, Sharifi S, Facchini G, Rinaldi L, Piezzo M, Manuela C, Nunnari G, Montopoli M. Multiple Effects of Ascorbic Acid against Chronic Diseases: Updated Evidence from Preclinical and Clinical Studies. Antioxidants (Basel) 2020; 9:antiox9121182. [PMID: 33256059 PMCID: PMC7761324 DOI: 10.3390/antiox9121182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Severe disease commonly manifests as a systemic inflammatory process. Inflammation is associated withthe enhanced production of reactive oxygen and nitrogen species and with a marked reduction in the plasma concentrations of protective antioxidant molecules. This imbalance gives rise to oxidative stress, which is greater in patients with more severe conditions such as sepsis, cancer, cardiovascular disease, acute respiratory distress syndrome, and burns. In these patients, oxidative stress can trigger cell, tissue, and organ damage, thus increasing morbidity and mortality. Ascorbic acid (ASC) is a key nutrient thatserves as an antioxidant and a cofactor for numerous enzymatic reactions. However, humans, unlike most mammals, are unable to synthesize it. Consequently, ASC must be obtained through dietary sources, especially fresh fruit and vegetables. The value of administering exogenous micronutrients, to reestablish antioxidant concentrations in patients with severe disease, has been recognized for decades. Despite the suggestion that ASC supplementation may reduce oxidative stress and prevent several chronic conditions, few large, randomized clinical trials have tested it in patients with severe illness. This article reviews the recent literature on the pharmacological profile of ASC and the role of its supplementation in critically ill patients.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
- Correspondence:
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), 60126 Ancona, Italy;
| | - Saman Sharifi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| | - Gaetano Facchini
- Division of Medical Oncology, “S. Maria delle Grazie” Hospital—ASL Napoli 2 Nord, 80126 Pozzuoli, Italy;
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 80121 Napoli, Italy;
| | - Michela Piezzo
- Division of Breast Medical Oncology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy;
| | - Ceccarelli Manuela
- Division of Infectious Disease, University of Catania, 95122 Catania, Italy;
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| |
Collapse
|
6
|
Impact of Lifestyles (Diet and Exercise) on Vascular Health: Oxidative Stress and Endothelial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1496462. [PMID: 33062134 PMCID: PMC7533760 DOI: 10.1155/2020/1496462] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Healthy lifestyle and diet are associated with significant reduction in risk of obesity, type 2 diabetes, and cardiovascular diseases. Oxidative stress and the imbalance between prooxidants and antioxidants are linked to cardiovascular and metabolic diseases. Changes in antioxidant capacity of the body may lead to oxidative stress and vascular dysfunction. Diet is an important source of antioxidants, while exercise offers many health benefits as well. Recent findings have evidenced that diet and physical factors are correlated to oxidative stress. Diet and physical factors have debatable roles in modulating oxidative stress and effects on the endothelium. Since endothelium and oxidative stress play critical roles in cardiovascular and metabolic diseases, dietary and physical factors could have significant implications on prevention of the diseases. This review is aimed at summarizing the current knowledge on the impact of diet manipulation and physical factors on endothelium and oxidative stress, focusing on cardiovascular and metabolic diseases. We discuss the friend-and-foe role of dietary modification (including different diet styles, calorie restriction, and nutrient supplementation) on endothelium and oxidative stress, as well as the potential benefits and concerns of physical activity and exercise on endothelium and oxidative stress. A fine balance between oxidative stress and antioxidants is important for normal functions in the cells and interfering with this balance may lead to unfavorable effects. Further studies are needed to identify the best diet composition and exercise intensity.
Collapse
|
7
|
Bunsawat K, Ratchford SM, Alpenglow JK, Park SH, Jarrett CL, Stehlik J, Drakos SG, Richardson RS, Wray DW. Chronic antioxidant administration restores macrovascular function in patients with heart failure with reduced ejection fraction. Exp Physiol 2020; 105:1384-1395. [PMID: 32495411 DOI: 10.1113/ep088686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022]
Abstract
NEW FINDINGS What is the central question of this study? We aimed to examine oxidative stress, antioxidant capacity and macro- and microvascular function in response to 30 days of oral antioxidant administration in patients with heart failure with reduced ejection fraction. What is the main finding and its importance? We observed an approximately twofold improvement in macrovascular function, assessed via brachial artery flow-mediated dilatation, and a reduction in oxidative stress after antioxidant administration in patients with heart failure with reduced ejection fraction. The improvement in macrovascular function was reversed 1 week after treatment cessation. These findings have identified the potential of oral antioxidant administration to optimize macrovascular health in this patient group. ABSTRACT Heart failure with reduced ejection fraction (HFrEF) is characterized by macrovascular dysfunction and elevated oxidative stress that may be mitigated by antioxidant (AOx) administration. In this prospective study, we assessed flow-mediated dilatation (FMD) and reactive hyperaemia responses in 14 healthy, older control participants and 14 patients with HFrEF, followed by 30 days of oral AOx administration (1 g vitamin C, 600 I.U. vitamin E and 0.6 g α-lipoic acid) in the patient group. Blood biomarkers of oxidative stress (malondialdehyde) and AOx capacity (ferric reducing ability of plasma) were also assessed. Patients with HFrEF had a lower %FMD (2.63 ± 1.57%) than control participants (5.62 ± 2.60%), and AOx administration improved %FMD in patients with HFrEF (30 days, 4.90 ± 2.38%), effectively restoring macrovascular function to that of control participants. In a subset of patients, we observed a progressive improvement in %FMD across the treatment period (2.62 ± 1.62, 4.23 ± 2.69, 4.33 ± 2.24 and 4.97 ± 2.56% at days 0, 10, 20 and 30, respectively, n = 12) that was abolished 7 days after treatment cessation (2.99 ± 1.78%, n = 9). No difference in reactive hyperaemia was evident between groups or as a consequence of the AOx treatment. Ferric reducing ability of plasma levels increased (from 6.08 ± 2.80 to 6.70 ± 1.59 mm, day 0 versus 30) and malondialdehyde levels decreased (from 6.81 ± 2.80 to 6.22 ± 2.84 μm, day 0 versus 30) after treatment. These findings demonstrate the efficacy of chronic AOx administration in attenuating oxidative stress, improving AOx capacity and restoring macrovascular function in patients with HFrEF.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Stephen M Ratchford
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Soung Hun Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Catherine L Jarrett
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Josef Stehlik
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stavros G Drakos
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - D Walter Wray
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|