1
|
Magalhães P, Domingues RM, Alves E. Hemp Seeds, Flaxseed, and Açaí Berries: Health Benefits and Nutritional
Importance with Emphasis on the Lipid Content. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666210624142643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Some plant seeds and berries have gained increased recognition due to their wide
variety of bioactive compounds. Many of these foods are rich in lipids with high nutritional
value, of which n-3 and n-6 essential fatty acids stand out. However, knowledge of the chemical
composition and biological activity of these compounds and their value as a source of
healthy lipids is far from being fully explored.
The benefits of the intake of hemp seeds, flaxseed, and açaí berries, considered functional
foods, have been compiled in this review. Likewise, their general chemical composition will be
described to evaluate their relevance in a healthy diet, highlighting their lipid components and
health lipid indices.
The fibres and essential fatty acids of hemp seeds and flaxseed and the antioxidant properties
of açaí berries provide them protective roles against several chronic non-communicable diseases
and represent significant beneficial effects that add value to these healthy natural products.
More research is needed to deepen the knowledge on their lipids’ molecular composition and
bioactivity.
Collapse
Affiliation(s)
- Pedro Magalhães
- Department of Chemistry, Mass Spectrometry Centre, LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Rosário M. Domingues
- Department of Chemistry, Mass Spectrometry Centre, LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
- Department of Chemistry, Centre for Environmental and Marine Studies, CESAM, University of Aveiro, Aveiro,
Portugal
| | - Eliana Alves
- Department of Chemistry, Mass Spectrometry Centre, LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Hu CF, Wu SP, Lin GJ, Shieh CC, Hsu CS, Chen JW, Chen SH, Hong JS, Chen SJ. Microglial Nox2 Plays a Key Role in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:638381. [PMID: 33868265 PMCID: PMC8050344 DOI: 10.3389/fimmu.2021.638381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
While oxidative stress has been linked to multiple sclerosis (MS), the role of superoxide-producing phagocyte NADPH oxidase (Nox2) in central nervous system (CNS) pathogenesis remains unclear. This study investigates the impact of Nox2 gene ablation on pro- and anti-inflammatory cytokine and chemokine production in a mouse experimental autoimmune encephalomyelitis (EAE) model. Nox2 deficiency attenuates EAE-induced neural damage and reduces disease severity, pathogenic immune cells infiltration, demyelination, and oxidative stress in the CNS. The number of autoreactive T cells, myeloid cells, and activated microglia, as well as the production of cytokines and chemokines, including GM-CSF, IFNγ, TNFα, IL-6, IL-10, IL-17A, CCL2, CCL5, and CXCL10, were much lower in the Nox2-/- CNS tissues but remained unaltered in the peripheral lymphoid organs. RNA-seq profiling of microglial transcriptome identified a panel of Nox2 dependent proinflammatory genes: Pf4, Tnfrsf9, Tnfsf12, Tnfsf13, Ccl7, Cxcl3, and Cxcl9. Furthermore, gene ontology and pathway enrichment analyses revealed that microglial Nox2 plays a regulatory role in multiple pathways known to be important for MS/EAE pathogenesis, including STAT3, glutathione, leukotriene biosynthesis, IL-8, HMGB1, NRF2, systemic lupus erythematosus in B cells, and T cell exhaustion signaling. Taken together, our results provide new insights into the critical functions performed by microglial Nox2 during the EAE pathogenesis, suggesting that Nox2 inhibition may represent an important therapeutic target for MS.
Collapse
Affiliation(s)
- Chih-Fen Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chih-Sin Hsu
- Genomics Center for Clinical and Biotechnological Applications of Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jing-Wun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Heng Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Shyi-Jou Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Effects of co-administration of rapamycin and evening primrose/hemp seed oil supplement on immunologic factors and cell membrane fatty acids in experimental autoimmune encephalomyelitis. Gene 2020; 759:144987. [PMID: 32712065 DOI: 10.1016/j.gene.2020.144987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The immune response is influenced by the administration of omega-3 polyunsaturated fatty acids (PUFA). Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE) are affected by PUFA. The combination of evening primrose/hemp seed oil (EPO/HSO) has essential fatty acids (EFAs) for human optimal health due to the favorable ratio of omega-6/omega-3 and antioxidantal properties. The study was conducted to evaluate the effects of EPO/HSO on improving the membrane fatty acids composition of spleen and blood cells and immunologic factors in compared to rapamycin (RAPA) in the EAE model. METHODS AND MATERIALS Chronic-EAE was induced by induction of MOG in C57BL/6J mice (female, age: 6-8 weeks, weight 18-21). Mice were assigned to 5 groups (6/group) to evaluate the therapeutic effects of EPO/HSO supplement in comparison with rapamycin: A group; EPO/HSO + RAPA, B group; RAPA, C group; EPO/HSO. Results were compared to two control groups (EAE and naive). The fatty acid profile of the spleen and blood cell membrane was evaluated. Real-time-polymerase chain reaction was used for the evaluate the genes expression levels of interleukin (IL) -4, IL-5, and IL-13 in lymphocytes. Also, IL-4 of serum was evaluated by enzyme-linked immunosorbent assay (ELISA). RESULTS Our findings indicated that EPO/HSO therapy significantly increased the percentage of essential fatty acids in cell membrane of the spleen and blood. The relative expression of IL-4, IL-5, and IL-13 genes in lymphocytes and serum level of IL-4 was significantly increased in the HSO/EPO treated group versus other groups. CONCLUSION These results point to potential therapeutic effects on the repair of the structure of cell membranes and suppression of inflammation by EPO/HSO in EAE.
Collapse
|