1
|
Pehlivanlar E, Çakir DA, Sanajou S, Tezel Yalçin H, Baydar T, Erkekoğlu P, Avci H, Şimşek R. Synthesis and characterization of new hexahydroquinoline derivatives and evaluation of their cytotoxicity, intracellular ROS production, and inhibitory effects on inflammatory mediators. Turk J Chem 2024; 48:659-675. [PMID: 39296790 PMCID: PMC11407359 DOI: 10.55730/1300-0527.3686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 07/23/2024] [Indexed: 09/21/2024] Open
Abstract
Inflammation is a response to injury and infection in an organism. It can be categorized as acute or chronic. Chronic inflammation is the underlying cause of many diseases such as Alzheimer disease, diabetes, rheumatoid arthritis, atherosclerosis, and cardiovascular diseases. Recent studies have proven the antiinflammatory properties of 1,4-dihydropyridines (1,4-DHPs) and their derivatives, which have many biological activities including the blocking of calcium channels. In this study, 15 compounds that are condensed derivatives of 1,4-DHPs, with the general structure of hexahydroquinoline-3-carboxylate, were synthesized. These compounds, expected to show inhibitory activity against inflammatory mediators, were obtained by the reaction of 4-(difluoromethoxy)benzaldehyde, substituted/nonsubstituted 1,3-cyclohexanedione derivatives, and appropriate alkyl acetoacetate compounds in the presence of ammonium acetate as a nitrogen source according to the Hantzsch synthesis method. The structures of the synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, and HRMS methods. The cytotoxic properties of the compounds were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method in the 3T3 cell line. Among the 15 compounds, the three compounds with the lowest levels of cytotoxic effects were selected for further experiments. Inflammation was induced by lipoxygenase and the effects of the selected compounds on the levels of reactive oxygen species, cytokines, and complement C3 and C9 regulatory proteins were investigated. It was found that the three selected compounds decreased the levels of transforming growth factor-beta 1 (TGF-β1). Among these compounds, compound 3e provided the most significant decrease in this cytokine. Moreover, 3e increased both C3 and C9 levels. Molecular modeling studies also showed that 3e had better affinity for TGF-β1. When the binding modes of these compounds in the active site of TGF-β1 were analyzed, it was found that compound 3e had hydrophobic interactions with amino acids Leu142, Tyr84, and Ile13; halogen bond interactions with Asp92; and hydrogen bond interactions with Ser89, Gly88, and Gly14 in the active binding site. Further in vitro and in vivo studies are needed to show the possible mechanism of action of compound 3e.
Collapse
Affiliation(s)
- Ezgi Pehlivanlar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye
| | - Deniz Arca Çakir
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye
| | - Sonia Sanajou
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye
| | - Hülya Tezel Yalçin
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye
| | - Terken Baydar
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye
| | - Pınar Erkekoğlu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye
- Department of Vaccine Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye
| | - Hanife Avci
- Department of Biostatistics, School of Medicine, Hacettepe University, Ankara, Turkiye
| | - Rahime Şimşek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkiye
| |
Collapse
|
2
|
Wu RZ, Zhou HY, Song JF, Xia QH, Hu W, Mou XD, Li X. Chemotherapeutics for Toxoplasma gondii: Molecular Biotargets, Binding Modes, and Structure-Activity Relationship Investigations. J Med Chem 2021; 64:17627-17655. [PMID: 34894691 DOI: 10.1021/acs.jmedchem.1c01569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxoplasmosis, an infectious zoonotic disease caused by the apicomplexan parasite Toxoplasma gondii (T. gondii), is a major worldwide health problem. However, there are currently no effective options (chemotherapeutic drugs or prophylactic vaccines) for treating chronic latent toxoplasmosis infection. Accordingly, seeking more effective and safer chemotherapeutics for combating this disease remains a long-term and challenging objective. In this paper, we summarize possible molecular biotargets, with an emphasis on those that are druggable and promising, including, without limitation, calcium-dependent protein kinase 1, bifunctional thymidylate synthase-dihydrofolate reductase, and farnesyl diphosphate synthase. Meanwhile, as important components of medicinal chemistry, the binding modes and structure-activity relationship profiles of the corresponding inhibitors were also illuminated. We anticipate that this information will be helpful for further identification of more effective chemotherapeutic interventions to prevent and treat zoonotic infections caused by T. gondii.
Collapse
Affiliation(s)
- Rong-Zhen Wu
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China
| | - Huai-Yu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, no. 44 Wenhua Xi Road, Ji'nan, Shandong 250012, PR China
| | - Jing-Feng Song
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, no. 1168 Chunrong Xi Road, Kunming, Yunnan 650500, PR China
| | - Qiao-Hong Xia
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, no. 44 Wenhua Xi Road, Ji'nan, Shandong 250012, PR China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, no. 72 Binhai Road of JiMo, Qingdao, Shandong 266237, PR China
| | - Xiao-Dong Mou
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China
| | - Xun Li
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China.,Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100192, PR China
| |
Collapse
|