Zhou X, Huang N, Hou X, Zhu L, Xie Y, Ba Z, Luo Y. Icaritin attenuates 6-OHDA-induced MN9D cell damage by inhibiting oxidative stress.
PeerJ 2022;
10:e13256. [PMID:
35433120 PMCID:
PMC9012182 DOI:
10.7717/peerj.13256]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/22/2022] [Indexed: 01/15/2023] Open
Abstract
Background
We assessed whether ICT can alleviate 6-OHDA-induced cell damage via inhibition of oxidative stress by evaluating the protective effect of icaritin (ICT) against 6-hydroxydopamine (6-OHDA)-induced MN9D cell damage and further determined the mechanism by which ICT reduces oxidative stress.
Methods
MN9D cells were treated with 6-OHDA, to study the mechanism underlying the neuroprotective effect of ICT. MN9D cell damage was assessed by the CCK-8 assay, flow cytometry was performed to measure the content of reactive oxygen species (ROS) in cells, a superoxide dismutase (SOD) kit was used to evaluate SOD activity, and Western blotting was used to measure the expression of α-synuclein (α-Syn), Tyrosine hydroxylase (TH), nuclear factor erythroid-2 related factor 2 (Nrf2), and heme oxygenase-1 (HO-1).
Results
ICT reduced damage to MN9D cells induced by 6-OHDA. ICT increased SOD activity and TH expression and reduced ROS production and α-Syn expression. ICT promoted the translocation of Nrf2 from the cytoplasm to the nucleus and further increased the protein expression of HO-1.
Conclusions
ICT protects against 6-OHDA-induced dopaminergic neuronal cell injury by attenuating oxidative stress, and the mechanism is related to modulate the activities of Nrf2, HO-1 protein, and SOD.
Collapse