1
|
Singh S, Verma AK, Chowdhary N, Sharma S, Awasthi A. Dengue havoc: overview and eco-friendly strategies to forestall the current epidemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124806-124828. [PMID: 37989950 DOI: 10.1007/s11356-023-30745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Dengue fever is a mosquito-borne viral illness that affects over 100 nations around the world, including Africa, America, the Eastern Mediterranean, Southeast Asia, and the Western Pacific. Those who get infected by virus for the second time are at greater risk of having persistent dengue symptoms. Dengue fever has yet to be treated with a long-lasting vaccination or medication. Because of their ease of use, mosquito repellents have become popular as a dengue prevention technique. However, this has resulted in environmental degradation and harm, as well as bioaccumulation and biomagnification of hazardous residues in the ecosystem. Synthetic pesticides have caused a plethora of serious problems that were not foreseen when they were originally introduced. The harm caused by the allopathic medications/synthetic pesticides/chemical mosquito repellents has paved the door to employment of eco-friendly/green approaches in order to reduce dengue cases while protecting the integrity of the nearby environment too. Since the cases of dengue have become rampant these days, hence, starting the medication obtained from green approaches as soon as the disease is detected is advisable. In the present paper, we recommend environmentally friendly dengue management strategies, which, when combined with a reasonable number of vector control approaches, may help to avoid the dengue havoc as well as help in maintaining the integrity of the ecosystem.
Collapse
Affiliation(s)
- Satpal Singh
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India, 174103
| | - Arunima Kumar Verma
- Department of Zoology, Autonomous Government P.G. College, Satna, Madhya Pradesh, India, 485001
| | - Nupoor Chowdhary
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India, 174103
| | - Shikha Sharma
- Department of Botany, Post Graduate Government College for Girls, Sector-11, Chandigarh, India, 160011
| | - Abhishek Awasthi
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India, 174103.
| |
Collapse
|
2
|
Zohra T, Saeed F, Ikram A, Khan T, Alam S, Adil M, Gul A, Almawash S, Ayaz M. Nanomedicine as a potential novel therapeutic approach against the dengue virus. Nanomedicine (Lond) 2023; 18:1567-1584. [PMID: 37753727 DOI: 10.2217/nnm-2022-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Dengue is an arbovirus infection which is transmitted by Aedes mosquitoes. Its prompt detection and effective treatment is a global health challenge. Various nanoparticle-based vaccines have been formulated to present immunogen (antigens) to instigate an immune response or prevent virus spread, but no specific treatment has been devised. This review explores the role of nanomedicine-based therapeutic agents against dengue virus, taking into consideration the applicable dengue virus assays that are sensitive, specific, have a short turnaround time and are inexpensive. Various kinds of metallic, polymeric and lipid nanoparticles with safe and effective profiles present an alternative strategy that could provide a better remedy for eradicating the dengue virus.
Collapse
Affiliation(s)
- Tanzeel Zohra
- Public Health Laboratories Division, National Institute of Health, Islamabad, 45500, Pakistan
| | - Faryal Saeed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Ikram
- Public Health Laboratories Division, National Institute of Health, Islamabad, 45500, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| | - Siyab Alam
- Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| | - Muhammad Adil
- Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| | - Ayesha Gul
- Department of Chemical Engineering, Polytechnique Montreal, H3T IJ4, Canada
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| |
Collapse
|
3
|
Malik S, Ahsan O, Mumtaz H, Tahir Khan M, Sah R, Waheed Y. Tracing down the Updates on Dengue Virus-Molecular Biology, Antivirals, and Vaccine Strategies. Vaccines (Basel) 2023; 11:1328. [PMID: 37631896 PMCID: PMC10458802 DOI: 10.3390/vaccines11081328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Nearly half of the world is at risk of developing dengue infection. Dengue virus is the causative agent behind this public healthcare concern. Millions of dengue cases are reported every year, leading to thousands of deaths. The scientific community is working to develop effective therapeutic strategies in the form of vaccines and antiviral drugs against dengue. METHODS In this review, a methodological approach has been used to gather data from the past five years to include the latest developments against the dengue virus. RESULTS Different therapeutics and antiviral targets against the dengue virus are at different stages of development, but none have been approved by the FDA. Moreover, various vaccination strategies have also been discussed, including attenuated virus vaccines, recombinant subunit vaccines, viral vector vaccines, DNA vaccines, nanotechnology, and plant-based vaccines, which are used to develop effective vaccines for the dengue virus. Many dengue vaccines pass the initial phases of evaluation, but only two vaccines have been approved for public use. DENGVAXIA is the only FDA-approved vaccine against all four stereotypes of the dengue virus, but it is licensed for use only in individuals 6-16 years of age with laboratory-confirmed previous dengue infection and living in endemic countries. Takeda is the second vaccine approved for use in the European Union, the United Kingdom, Brazil, Argentina, Indonesia, and Thailand. It produced sustained antibody responses against all four serotypes of dengue virus, regardless of previous exposure and dosing schedule. Other dengue vaccine candidates at different stages of development are TV-003/005, TDENV PIV, V180, and some DNA vaccines. CONCLUSION There is a need to put more effort into developing effective vaccines and therapeutics for dengue, as already approved vaccines and therapeutics have limitations. DENGVAXIA is approved for use in children and teenagers who are 6-16 years of age and have confirmed dengue infection, while Takeda is approved for use in certain countries, and it has withdrawn its application for FDA approval.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Omar Ahsan
- Department of Medicine, Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan
| | - Hassan Mumtaz
- Innovation, Implementation, and Partnership Unit, Association for Social Development, Islamabad 44000, Pakistan
- Health Services Academy, Islamabad 44000, Pakistan
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, 1KM Defence Road, Lahore 58810, Pakistan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
4
|
Nanaware N, Banerjee A, Mullick Bagchi S, Bagchi P, Mukherjee A. Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses 2021; 13:v13101967. [PMID: 34696397 PMCID: PMC8541669 DOI: 10.3390/v13101967] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Dengue is a mosquito-borne viral disease (arboviral) caused by the Dengue virus. It is one of the prominent public health problems in tropical and subtropical regions with no effective vaccines. Every year around 400 million people get infected by the Dengue virus, with a mortality rate of about 20% among the patients with severe dengue. The Dengue virus belongs to the Flaviviridae family, and it is an enveloped virus with positive-sense single-stranded RNA as the genetic material. Studies of the infection cycle of this virus revealed potential host targets important for the virus replication cycle. Here in this review article, we will be discussing different stages of the Dengue virus infection cycle inside mammalian host cells and how host proteins are exploited by the virus in the course of infection as well as how the host counteracts the virus by eliciting different antiviral responses.
Collapse
Affiliation(s)
- Nikita Nanaware
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
| | - Anwesha Banerjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
| | | | - Parikshit Bagchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: or (P.B.); or (A.M.)
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
- Correspondence: or (P.B.); or (A.M.)
| |
Collapse
|
5
|
Ali F, Chorsiya A, Anjum V, Khasimbi S, Ali A. A systematic review on phytochemicals for the treatment of dengue. Phytother Res 2020; 35:1782-1816. [PMID: 33118251 DOI: 10.1002/ptr.6917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/23/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Dengue fever is prevalent in subtopic regions, producing mortality and morbidity worldwide, which have been of major concern to different governments and World Health Organization. The search of new anti-dengue agents from phytochemicals was assumed to be highly emergent in past. The phytochemicals have been used in wide distribution of vector ailments such as malaria. The demand of the phytochemicals is based on the medicines which are mostly considered to be safer, less harmful than synthetic drugs and nontoxic. This review mentions majorly about the phytochemicals potentially inhibiting dengue fever around the world. The phytochemicals have been isolated from different species, have potential for the treatment of dengue. Different crude extracts and essential oils obtained from different species showed a broad activity against different phytochemicals. The current studies showed that natural products represent a rich source of medicines toward the dengue fever. Furthermore, ethnobotanical surveys and laboratory investigation established identified natural plants species in the development of drug discovery to control the dengue fever.
Collapse
Affiliation(s)
- Faraat Ali
- Department of Inspection and Licensing, Laboratory Services, Botswana Medicines Regulatory Authority, Gaborone, Botswana
| | - Anushma Chorsiya
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Varisha Anjum
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Asad Ali
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|