1
|
Dzhalilova DS, Zolotova NA, Mkhitarov VA, Kosyreva AM, Tsvetkov IS, Khalansky AS, Alekseeva AI, Fatkhudinov TH, Makarova OV. Morphological and molecular-biological features of glioblastoma progression in tolerant and susceptible to hypoxia Wistar rats. Sci Rep 2023; 13:12694. [PMID: 37542119 PMCID: PMC10403616 DOI: 10.1038/s41598-023-39914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023] Open
Abstract
Hypoxia is a major pathogenetic factor in many cancers. Individual resistance to suboptimal oxygen availability is subject to broad variation and its possible role in tumorigenesis remains underexplored. This study aimed at specific characterization of glioblastoma progression in male tolerant and susceptible to hypoxia Wistar rats. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 13), 'normal', and 'susceptible to hypoxia' (n = 24). The 'normal' group was excluded from subsequent experiments. One month later, the animals underwent inoculation with rat glioblastoma 101.8 followed by monitoring of survival, body weight dynamics and neurological symptoms. The animals were sacrificed on post-inoculation days 11 (subgroup 1) and 15 (subgroup 2). Relative vessels number, necrosis areas and Ki-67 index were assessed microscopically; tumor volumes were determined by 3D reconstruction from histological images; serum levels of HIF-1α, IL-1β, and TNFα were determined by ELISA. None of the tolerant to hypoxia animals died of the disease during observation period, cf. 85% survival on day 11 and 55% survival on day 15 in the susceptible group. On day 11, proliferative activity of the tumors in the tolerant animals was higher compared with the susceptible group. On day 15, proliferative activity, necrosis area and volume of the tumors in the tolerant to hypoxia animals were higher compared with the susceptible group. ELISA revealed no dynamics in TNFα levels, elevated levels of IL-1β in the susceptible animals on day 15 in comparison with day 11 and tolerant ones. Moreover, there were elevated levels of HIF-1α in the tolerant animals on day 15 in comparison with day 11. Thus, the proliferative activity of glioblastoma cells and the content of HIF-1α were higher in tolerant to hypoxia rats, but the mortality associated with the tumor process and IL-1β level in them were lower than in susceptible animals. Specific features of glioblastoma 101.8 progression in tolerant and susceptible to hypoxia rats, including survival, tumor growth rates and IL-1β level, can become the basis of new personalized approaches for cancer diseases treatment in accordance to individual hypoxia resistance.
Collapse
Affiliation(s)
- D Sh Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418.
| | - N A Zolotova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - V A Mkhitarov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - A M Kosyreva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya St, Moscow, Russia, 117198
| | - I S Tsvetkov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - A S Khalansky
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - A I Alekseeva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - T H Fatkhudinov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya St, Moscow, Russia, 117198
| | - O V Makarova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| |
Collapse
|
2
|
Weidemann H, Feger D, Ehlert JE, Menger MM, Krempien RC. Markedly divergent effects of Ouabain on a Temozolomide-resistant (T98G) vs. a Temozolomide-sensitive (LN229) Glioblastoma cell line. Discov Oncol 2023; 14:27. [PMID: 36840822 PMCID: PMC9968366 DOI: 10.1007/s12672-023-00633-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor prognosis. GMB are highly recurrent mainly because of radio- and chemoresistance. Radiotherapy with Temozolomide (TMZ) is until today the golden standard adjuvant therapy, however, the optimal treatment of recurrent glioblastoma remains controversial. Ouabain belongs to the Cardiotonic Steroids (CTS) the natural ligands of the Na/K-ATPase (NKA). It is established that the NKA represents a signal transducer with either stimulating or inhibiting cell growth, apoptosis, migration and angiogenesis. Over the last decade evidence grew that CTS have anti-tumor properties especially in GBM. AIM Proceeding from recent studies we wanted to further demonstrate a divergent effect of Ouabain on a TMZ-resistant (T98G) as compared to a TMZ-sensitive (LN229) GBM cell line. METHODS We analyzed the effect of Ouabain on cell migration and plasma cell membrane potential (PCMP) in the LN229 and T98G GBM cell line as well as underlying mechanisms (Bcl-2 and p-Akt/pan-Akt expression). Moreover, we analyzed the anti-angiogenic effect of Ouabain on human umbilical vein endothelial cells (HUVECs). RESULTS T98G cells showed a significant inhibition of cell migration and a significant depolarization of the PCMP at similar Ouabain concentrations (IC50 = 1.67 × 10-7 M) resp. (IC50 = 2.72 × 10-7 M) with a strong inverse correlation (R2 = 0.95). In contrast, LN229 cells did not respond to Ouabain in these assays at all. Similarly, only T98G but not LN229 cells revealed Bcl-2 down-regulation at nanomolar Ouabain concentrations. This unique response to Ouabain is associated with a down-regulation of pan-Akt in T98G cells 24 h after Ouabain (1.0 × 10-6 M) treatment. For the first time, the anti-angiogenic effect of Ouabain on HUVEC cells (IC50 = 5.49 × 10-8 M) was demonstrated which correlated strongly with the anti-migratory effect (R2 = 0.85). CONCLUSION The TMZ-resistant T98G cell line as compared to the TMZ-sensitive LN229 cell line shows a high sensitivity towards Ouabain. We consider it as a promising new compound especially in recurrent GBM to overcome the resistance to TMZ and irradiation.
Collapse
Affiliation(s)
- Heidrun Weidemann
- Clinic for Radiotherapy, HELIOS Hospital Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Daniel Feger
- Reaction Biology Europe GmbH, Engesserstr.4, 79108 Freiburg, Germany
| | - Jan E. Ehlert
- Reaction Biology Europe GmbH, Engesserstr.4, 79108 Freiburg, Germany
| | - Marcus M. Menger
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg13, 14476 Potsdam, Germany
| | - Robert C. Krempien
- Clinic for Radiotherapy, HELIOS Hospital Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| |
Collapse
|
3
|
Erickson A, Chiarelli PA, Huang J, Levengood SL, Zhang M. Electrospun nanofibers for 3-D cancer models, diagnostics, and therapy. NANOSCALE HORIZONS 2022; 7:1279-1298. [PMID: 36106417 DOI: 10.1039/d2nh00328g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As one of the leading causes of global mortality, cancer has prompted extensive research and development to advance efficacious drug discovery, sustained drug delivery and improved sensitivity in diagnosis. Towards these applications, nanofibers synthesized by electrospinning have exhibited great clinical potential as a biomimetic tumor microenvironment model for drug screening, a controllable platform for localized, prolonged drug release for cancer therapy, and a highly sensitive cancer diagnostic tool for capture and isolation of circulating tumor cells in the bloodstream and for detection of cancer-associated biomarkers. This review provides an overview of applied nanofiber design with focus on versatile electrospinning fabrication techniques. The influence of topographical, physical, and biochemical properties on the function of nanofiber assemblies is discussed, as well as current and foreseeable barriers to the clinical translation of applied nanofibers in the field of oncology.
Collapse
Affiliation(s)
- Ariane Erickson
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Peter A Chiarelli
- The Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jianxi Huang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Sheeny Lan Levengood
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Amaral M, Cruz N, Rosa A, Nogueira B, Costa D, Santos F, Brazão M, Policarpo P, Mateus R, Kobozev Y, Reis CP. An update of advanced nanoplatforms for Glioblastoma Multiforme Management. EXCLI JOURNAL 2021; 20:1544-1570. [PMID: 34924904 PMCID: PMC8678060 DOI: 10.17179/excli2021-4393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is a very aggressive and heterogeneous glioma. Currently, GBM is treated with a combination of surgery, radiotherapy, chemotherapy (e.g. temozolamide) and Tumour Treating Fields. Unfortunately, the mean survival is still around 15 months. This poor prognosis is associated with therapy resistance, tumor recurrence, and limited delivery of drugs due to the blood-brain barrier nature. Nanomedicine, the application of nanotechnology to medicine, has revolutionized many health fields, specifically cancer diagnosis and treatment. This review explores the particularities of different nanosystems (i.e., superparamagnetic, polymeric and gold nanoparticles, and liposomes) as well as how they can be applied to the treatment and diagnosis of GBM. As described, the most of the cited examples are on the preclinical phase; however, positive results were obtained and thus, the distance to achieve an effective treatment is shorter every day.
Collapse
Affiliation(s)
- Mariana Amaral
- iMED.ULisboa, Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Cruz
- iMED.ULisboa, Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Rosa
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Beatriz Nogueira
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Diana Costa
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Francisco Santos
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mariana Brazão
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Pedro Policarpo
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita Mateus
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Yan Kobozev
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Pinto Reis
- iMED.ULisboa, Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
5
|
Liu YQ, Qin LY, Li HJ, Wang YX, Zhang R, Shi JM, Wu JH, Dong GX, Zhou P. Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review. Nanomedicine (Lond) 2021; 16:2207-2242. [PMID: 34533048 DOI: 10.2217/nnm-2021-0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the excellent ability to transform near-infrared light to localized visible or UV light, thereby achieving deep tissue penetration, lanthanide ion-doped upconversion nanoparticles (UCNP) have emerged as one of the most striking nanoscale materials for more effective and safer cancer treatment. Up to now, UCNPs combined with photosensitive components have been widely used in the delivery of chemotherapy drugs, photodynamic therapy and photothermal therapy. Applications in these directions are reviewed in this article. We also highlight microenvironmental tumor monitoring and precise targeted therapies. Then we briefly summarize some new trends and the existing challenges for UCNPs. We hope this review can provide new ideas for future cancer treatment based on UCNPs.
Collapse
Affiliation(s)
- Yu-Qi Liu
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Ying Qin
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong-Jiao Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yi-Xi Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rui Zhang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Min Shi
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Hua Wu
- Department of Materials Science, School of Physical Science & Technology, Key Laboratory of Special Function Materials & Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, PR China
| | - Gen-Xi Dong
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
6
|
Patel D, Wairkar S, Yergeri MC. Current Developments in Targeted Drug Delivery Systems for Glioma. Curr Pharm Des 2021; 26:3973-3984. [PMID: 32329681 DOI: 10.2174/1381612826666200424161929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/01/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Glioma is one of the most commonly observed tumours, representing about 75% of brain tumours in the adult population. Generally, glioma treatment includes surgical resection followed by radiotherapy and chemotherapy. The current chemotherapy for glioma involves the use of temozolomide, doxorubicin, monoclonal antibodies, etc. however, the clinical outcomes in patients are not satisfactory. Primarily, the blood-brain barrier hinders these drugs from reaching the target leading to the recurrence of glioma post-surgery. In addition, these drugs are not target-specific and affect the healthy cells of the body. Therefore, glioma-targeted drug delivery is essential to reduce the rate of recurrence and treat the condition with more reliable alternatives. METHODS A literature search was conducted to understand glioma pathophysiology, its current therapeutic approaches for targeted delivery using databases like Pub Med, Web of Science, Scopus, and Google Scholar, etc. Results: This review gives an insight to challenges associated with current treatments, factors influencing drug delivery in glioma, and recent advancements in targeted drug delivery. CONCLUSION The promising results could be seen with nanotechnology-based approaches, like polymeric, lipidbased, and hybrid nanoparticles in the treatment of glioma. Biotechnological developments, such as carrier peptides and gene therapy, are future prospects in glioma therapy. Therefore, these targeted delivery systems will be beneficial in clinical practices for glioma treatment.
Collapse
Affiliation(s)
- Dhrumi Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra - 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra - 400056, India
| | - Mayur C Yergeri
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra - 400056, India
| |
Collapse
|
7
|
Stephen ZR, Chiarelli PA, Revia RA, Wang K, Kievit F, Dayringer C, Jeon M, Ellenbogen R, Zhang M. Time-Resolved MRI Assessment of Convection-Enhanced Delivery by Targeted and Nontargeted Nanoparticles in a Human Glioblastoma Mouse Model. Cancer Res 2019; 79:4776-4786. [PMID: 31331912 PMCID: PMC6744959 DOI: 10.1158/0008-5472.can-18-2998] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/08/2019] [Accepted: 07/12/2019] [Indexed: 11/16/2022]
Abstract
Convection-enhanced delivery (CED) provides direct access of infusates to brain tumors; however, clinical translation of this technology has not been realized because of the inability to accurately visualize infusates in real-time and lack of targeting modalities against diffuse cancer cells. In this study, we use time-resolved MRI to reveal the kinetics of CED processes in a glioblastoma (GBM) model using iron oxide nanoparticles (NP) modified with a glioma-targeting ligand, chlorotoxin (CTX). Mice bearing orthotopic human GBM tumors were administered a single dose of targeted CTX-conjugated NP (NPCP-CTX) or nontargeted NP (NPCP) via CED. High-resolution T2-weighted, T2*-weighted, and quantitative T2 MRI were utilized to image NP delivery in real time and determined the volume of distribution (VD) of NPs at multiple time points over the first 48 hours post-CED. GBM-specific targeting was evaluated by flow cytometry and intracellular NP localization by histologic assessment. NPCP-CTX produced a VD of 121 ± 39 mm3 at 24 hours, a significant increase compared with NPCP, while exhibiting GBM specificity and localization to cell nuclei. Notably, CED of NPCP-CTX resulted in a sustained expansion of VD well after infusion, suggesting a possible active transport mechanism, which was further supported by the presence of NPs in endothelial and red blood cells. In summary, we show that time-resolved MRI is a suitable modality to study CED kinetics, and CTX-mediated CED facilitates extensive distribution of infusate and specific targeting of tumor cells. SIGNIFICANCE: MRI is used to monitor convection-enhanced delivery in real time using a nanoparticle-based contrast agent, and glioma-specific targeting significantly improves the volume of distribution in tumors.
Collapse
Affiliation(s)
- Zachary R Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
| | - Peter A Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, Washington
- Department of Neurosurgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
| | - Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
| | - Forrest Kievit
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Chris Dayringer
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
| | - Mike Jeon
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
| | - Richard Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington.
- Department of Radiology, University of Washington, Seattle, Washington
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington.
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Nam L, Coll C, Erthal LCS, de la Torre C, Serrano D, Martínez-Máñez R, Santos-Martínez MJ, Ruiz-Hernández E. Drug Delivery Nanosystems for the Localized Treatment of Glioblastoma Multiforme. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E779. [PMID: 29751640 PMCID: PMC5978156 DOI: 10.3390/ma11050779] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme is one of the most prevalent and malignant forms of central nervous system tumors. The treatment of glioblastoma remains a great challenge due to its location in the intracranial space and the presence of the blood⁻brain tumor barrier. There is an urgent need to develop novel therapy approaches for this tumor, to improve the clinical outcomes, and to reduce the rate of recurrence and adverse effects associated with present options. The formulation of therapeutic agents in nanostructures is one of the most promising approaches to treat glioblastoma due to the increased availability at the target site, and the possibility to co-deliver a range of drugs and diagnostic agents. Moreover, the local administration of nanostructures presents significant additional advantages, since it overcomes blood⁻brain barrier penetration issues to reach higher concentrations of therapeutic agents in the tumor area with minimal side effects. In this paper, we aim to review the attempts to develop nanostructures as local drug delivery systems able to deliver multiple agents for both therapeutic and diagnostic functions for the management of glioblastoma.
Collapse
Affiliation(s)
- L Nam
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| | - C Coll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| | - L C S Erthal
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| | - C de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46010 València, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - D Serrano
- Departamento de Farmacia Galenica y Tecnologia Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - R Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46010 València, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - M J Santos-Martínez
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
- School of Medicine, Trinity College Dublin (TCD), Dublin 2, Ireland.
| | - E Ruiz-Hernández
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| |
Collapse
|
9
|
Miranda A, Blanco-Prieto MJ, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles. Int J Pharm 2017; 531:389-410. [DOI: 10.1016/j.ijpharm.2017.07.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
10
|
Kuo YC, Lee CH, Rajesh R. Recent advances in the treatment of glioblastoma multiforme by inhibiting angiogenesis and using nanocarrier systems. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Miranda A, Blanco-Prieto M, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. Int J Pharm 2017; 531:372-388. [PMID: 28755993 DOI: 10.1016/j.ijpharm.2017.07.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour, and the most aggressive in nature. The prognosis for patients with GBM remains poor, with a median survival time of only 1-2 years. The treatment failure relies on the development of resistance by tumour cells and the difficulty of ensuring that drugs effectively cross the dual blood brain barrier/blood brain tumour barrier. The advanced molecular and genetic knowledge has allowed to identify the mechanisms responsible for temozolomide resistance, which represents the standard of care in GBM, along with surgical resection and radiotherapy. Such resistance has motivated the researchers to investigate new avenues for GBM treatment intended to improve patient survival. In this review, we provide an overview of major obstacles to effective treatment of GBM, encompassing biological barriers, cancer stem cells, DNA repair mechanisms, deregulated signalling pathways and autophagy. New insights and potential therapy approaches for GBM are also discussed, emphasizing localized chemotherapy delivered directly to the brain, immunotherapy, gene therapy and nanoparticle-mediated brain drug delivery.
Collapse
Affiliation(s)
- Ana Miranda
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal
| | - María Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Spain
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal.
| |
Collapse
|
12
|
Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. Int J Pharm 2017; 524:77-90. [PMID: 28359811 DOI: 10.1016/j.ijpharm.2017.03.049] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
Abstract
The paramount problem in the therapy of brain tumors is the inability of most drugs to cross the blood-brain barrier. PLGA nanoparticles overcoated with poloxamer 188 could overcome this problem and enabled a high anti-tumoral effect against the very aggressive intracranial 101.8 glioblastoma in rats that closely resembles human grade IV glioblastomas. The basis for the transport of these particles across the blood-brain barrier appears to be adsorption of blood apolipoproteins (ApoE or ApoA-I) on the nanoparticle surface caused by the poloxamer 188-coating, followed by receptor-mediated transcytosis of the nanoparticles. The objective of the present study is the elucidation of the mechanism by which the poloxamer 188-coated nanoparticles then enter the brain tumor cells. Their intracellular fate, therefore, was investigated using the U87 human glioma cell line. The main mechanism of the PLGA nanoparticle internalization by U87 cells was clathrin-mediated endocytosis. Within 1h free doxorubicin was released from late endosomes and could reach its target site, i.e. the DNA in the nuclei without degradation, whereas the PLGA nanoparticles, which were labeled with Cy5.5, still were observed in the endo-lysosomal compartment. These results demonstrate that the underlying mechanism of action in the brain cells is by diffusive doxorubicin release from the nanoparticles rather than by their intracellular degradation.
Collapse
|
13
|
Zhang H, Li YH, Chen Y, Wang MM, Wang XS, Yin XB. Fluorescence and Magnetic Resonance Dual-Modality Imaging-Guided Photothermal and Photodynamic Dual-Therapy with Magnetic Porphyrin-Metal Organic Framework Nanocomposites. Sci Rep 2017; 7:44153. [PMID: 28272454 PMCID: PMC5341151 DOI: 10.1038/srep44153] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Phototherapy shows some unique advantages in clinical application, such as remote controllability, improved selectivity, and low bio-toxicity, than chemotherapy. In order to improve the safety and therapeutic efficacy, imaging-guided therapy seems particularly important because it integrates visible information to speculate the distribution and metabolism of the probe. Here we prepare biocompatible core-shell nanocomposites for dual-modality imaging-guided photothermal and photodynamic dual-therapy by the in situ growth of porphyrin-metal organic framework (PMOF) on Fe3O4@C core. Fe3O4@C core was used as T2-weighted magnetic resonance (MR) imaging and photothermal therapy (PTT) agent. The optical properties of porphyrin were well remained in PMOF, and PMOF was therefore selected for photodynamic therapy (PDT) and fluorescence imaging. Fluorescence and MR dual-modality imaging-guided PTT and PDT dual-therapy was confirmed with tumour-bearing mice as model. The high tumour accumulation of Fe3O4@C@PMOF and controllable light excitation at the tumour site achieved efficient cancer therapy, but low toxicity was observed to the normal tissues. The results demonstrated that Fe3O4@C@PMOF was a promising dual-imaging guided PTT and PDT dual-therapy platform for tumour diagnosis and treatment with low cytotoxicity and negligible in vivo toxicity.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Hao Li
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yang Chen
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin 300071, China
| | - Man-Man Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, Hebei, China
| | - Xue-Sheng Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, Hebei, China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Carradori D, Gaudin A, Brambilla D, Andrieux K. Application of Nanomedicine to the CNS Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 130:73-113. [PMID: 27678175 DOI: 10.1016/bs.irn.2016.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drug delivery to the brain is a challenge because of the many mechanisms that protect the brain from the entry of foreign substances. Numerous molecules which could be active against brain disorders are not clinically useful due to the presence of the blood-brain barrier. Nanoparticles can be used to deliver these drugs to the brain. Encapsulation within colloidal systems can allow the passage of nontransportable drugs across this barrier by masking their physicochemical properties. It should be noted that the status of the blood-brain barrier is different depending on the brain disease. In fact, in some pathological situations such as tumors or inflammatory disorders, its permeability is increased allowing very easy translocation of carriers. This chapter gathers the promising results obtained by using nanoparticles as drug delivery systems with the aim to improve the therapy of some CNS diseases such as brain tumor, Alzheimer's disease, and stroke. The data show that several approaches can be investigated: (1) carrying drug through a permeabilized barrier, (2) crossing the barrier thanks to receptor-mediated transcytosis pathway in order to deliver drug into the brain parenchyma, and also (3) targeting and treating the endothelial cells themselves to preserve locally the brain tissue. The examples given in this chapter contribute to demonstrate that delivering drugs into the brain is one of the most promising applications of nanotechnology in clinical neuroscience.
Collapse
Affiliation(s)
- D Carradori
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Bruxelles, Belgium
| | - A Gaudin
- Yale University, New Haven, CT, United States
| | - D Brambilla
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - K Andrieux
- Université Paris Descartes, Université Paris-Sorbonne, UTCBS, UMR CNRS 8258, UE1022 INSERM, Paris, France.
| |
Collapse
|
15
|
Küçüktürkmen B, Devrim B, Saka OM, Yilmaz Ş, Arsoy T, Bozkir A. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells. Drug Dev Ind Pharm 2016; 43:12-21. [PMID: 27277750 DOI: 10.1080/03639045.2016.1200069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Combination therapy using anticancer drugs and nucleic acid is a more promising strategy to overcome multidrug resistance in cancer and to enhance apoptosis. In this study, lipid-polymer hybrid nanoparticles (LPNs), which contain both pemetrexed and miR-21 antisense oligonucleotide (anti-miR-21), have been developed for treatment of glioblastoma, the most aggressive type of brain tumor. Prepared LPNs have been well characterized by particle size distribution and zeta potential measurements, determination of encapsulation efficiency, and in vitro release experiments. Morphology of LPNs was determined by transmission electron microscopy. LPNs had a hydrodynamic size below 100 nm and exhibited sustained release of pemetrexed up to 10 h. Encapsulation of pemetrexed in LPNs increased cellular uptake from 6% to 78%. Results of confocal microscopy analysis have shown that co-delivery of anti-miR-21 significantly improved accumulation of LPNs in the nucleus of U87MG cells. Nevertheless, more effective cytotoxicity results could not be obtained due to low concentration of anti-miR-21, loaded in LPNs. We expect that the effective drug delivery systems can be obtained with higher concentration of anti-miR-21 for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - Burcu Devrim
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - Ongun M Saka
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - Şükran Yilmaz
- b Foot and Mouth Disease Institute , Ankara , Turkey
| | - Taibe Arsoy
- b Foot and Mouth Disease Institute , Ankara , Turkey
| | - Asuman Bozkir
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| |
Collapse
|
16
|
Nanoparticles for Targeting Intratumoral Hypoxia: Exploiting a Potential Weakness of Glioblastoma. Pharm Res 2016; 33:2059-77. [DOI: 10.1007/s11095-016-1947-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023]
|
17
|
Duan J, Zhou K, Tang X, Duan J, Zhao L. MicroRNA-34a inhibits cell proliferation and induces cell apoptosis of glioma cells via targeting of Bcl-2. Mol Med Rep 2016; 14:432-8. [PMID: 27176117 DOI: 10.3892/mmr.2016.5255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 03/30/2016] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is a highly malignant brain tumor, characterized by the poor prognosis and high recurrence rates. Despite therapeutic strategies including surgery, radiotherapy and chemotherapy, the median survival of patients is only 14.6 months. MicroRNAs (miRNAs) have been considered as a novel type of gene regulator. Previous studies have demonstrated that the expression of miRNA‑34a (miR‑34a) is significantly associated with the grade and prognosis of glioma. However, the exact function of miR‑34a on glioma progression and underlying mechanisms remain to be elucidated. The present study investigated the function of miR‑34a in U87 human glioma cells by exogenously transfecting cells with an miR‑34a mimic. Overexpression of miR‑34a inhibited proliferation, and induced apoptosis of U87 cells. The current study also demonstrated that B‑cell lymphoma 2 (Bcl‑2) was the target gene of miR‑34a, as demonstrated by luciferase assays. Furthermore, restoring the expression of Bcl‑2 was indicated to partially block the miR‑34a‑induced apoptosis. Thus, data from the present study identified miR‑34a as a tumor suppressor in glioma by, at least partially, targeting Bcl‑2. This may provide future novel diagnostic and therapeutic strategies for human glioma.
Collapse
Affiliation(s)
- Junwei Duan
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Kejun Zhou
- Department of Pediatric Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaoping Tang
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jie Duan
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Long Zhao
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
18
|
Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2016; 19:157-168. [PMID: 27524934 PMCID: PMC4981486 DOI: 10.1016/j.mattod.2015.08.022] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The development of nanoparticles (NPs) for use in all facets of oncological disease detection and therapy has shown great progress over the past two decades. NPs have been tailored for use as contrast enhancement agents for imaging, drug delivery vehicles, and most recently as a therapeutic component in initiating tumor cell death in magnetic and photonic ablation therapies. Of the many possible core constituents of NPs, such as gold, silver, carbon nanotubes, fullerenes, manganese oxide, lipids, micelles, etc., iron oxide (or magnetite) based NPs have been extensively investigated due to their excellent superparamagnetic, biocompatible, and biodegradable properties. This review addresses recent applications of magnetite NPs in diagnosis, treatment, and treatment monitoring of cancer. Finally, some views will be discussed concerning the toxicity and clinical translation of iron oxide NPs and the future outlook of NP development to facilitate multiple therapies in a single formulation for cancer theranostics.
Collapse
Affiliation(s)
- Richard A. Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|