1
|
Yavuz A, Alpsoy A, Gedik EO, Celik MY, Bassorgun CI, Unal B, Elpek GO. Artificial intelligence applications in predicting the behavior of gastrointestinal cancers in pathology. Artif Intell Gastroenterol 2022; 3:142-162. [DOI: 10.35712/aig.v3.i5.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Recent research has provided a wealth of data supporting the application of artificial intelligence (AI)-based applications in routine pathology practice. Indeed, it is clear that these methods can significantly support an accurate and rapid diagnosis by eliminating errors, increasing reliability, and improving workflow. In addition, the effectiveness of AI in the pathological evaluation of prognostic parameters associated with behavior, course, and treatment in many types of tumors has also been noted. Regarding gastrointestinal system (GIS) cancers, the contribution of AI methods to pathological diagnosis has been investigated in many studies. On the other hand, studies focusing on AI applications in evaluating parameters to determine tumor behavior are relatively few. For this purpose, the potential of AI models has been studied over a broad spectrum, from tumor subtyping to the identification of new digital biomarkers. The capacity of AI to infer genetic alterations of cancer tissues from digital slides has been demonstrated. Although current data suggest the merit of AI-based approaches in assessing tumor behavior in GIS cancers, a wide range of challenges still need to be solved, from laboratory infrastructure to improving the robustness of algorithms, before incorporating AI applications into real-life GIS pathology practice. This review aims to present data from AI applications in evaluating pathological parameters related to the behavior of GIS cancer with an overview of the opportunities and challenges encountered in implementing AI in pathology.
Collapse
Affiliation(s)
- Aysen Yavuz
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Anil Alpsoy
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Elif Ocak Gedik
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | | | | | - Betul Unal
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
2
|
Rasmussen R, Sanford T, Parwani AV, Pedrosa I. Artificial Intelligence in Kidney Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-11. [PMID: 35580292 DOI: 10.1200/edbk_350862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Artificial intelligence is rapidly expanding into nearly all facets of life, particularly within the field of medicine. The diagnosis, characterization, management, and treatment of kidney cancer is ripe with areas for improvement that may be met with the promises of artificial intelligence. Here, we explore the impact of current research work in artificial intelligence for clinicians caring for patients with renal cancer, with a focus on the perspectives of radiologists, pathologists, and urologists. Promising preliminary results indicate that artificial intelligence may assist in the diagnosis and risk stratification of newly discovered renal masses and help guide the clinical treatment of patients with kidney cancer. However, much of the work in this field is still in its early stages, limited in its broader applicability, and hampered by small datasets, the varied appearance and presentation of kidney cancers, and the intrinsic limitations of the rigidly structured tasks artificial intelligence algorithms are trained to complete. Nonetheless, the continued exploration of artificial intelligence holds promise toward improving the clinical care of patients with kidney cancer.
Collapse
Affiliation(s)
- Robert Rasmussen
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas Sanford
- Department of Urology, Upstate Medical University, Syracuse, NY
| | - Anil V Parwani
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Ivan Pedrosa
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX.,Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX.,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
3
|
A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches. Artif Intell Rev 2022. [DOI: 10.1007/s10462-021-10121-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
D'souza RN, Huang PY, Yeh FC. Structural Analysis and Optimization of Convolutional Neural Networks with a Small Sample Size. Sci Rep 2020; 10:834. [PMID: 31965034 PMCID: PMC6972775 DOI: 10.1038/s41598-020-57866-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 01/03/2020] [Indexed: 11/16/2022] Open
Abstract
Deep neural networks have gained immense popularity in the Big Data problem; however, the availability of training samples can be relatively limited in specific application domains, particularly medical imaging, and consequently leading to overfitting problems. This “Small Data” challenge may need a mindset that is entirely different from the existing Big Data paradigm. Here, under the small data scenarios, we examined whether the network structure has a substantial influence on the performance and whether the optimal structure is predominantly determined by sample size or data nature. To this end, we listed all possible combinations of layers given an upper bound of the VC-dimension to study how structural hyperparameters affected the performance. Our results showed that structural optimization improved accuracy by 27.99%, 16.44%, and 13.11% over random selection for a sample size of 100, 500, and 1,000 in the MNIST dataset, respectively, suggesting that the importance of the network structure increases as the sample size becomes smaller. Furthermore, the optimal network structure was mostly determined by the data nature (photographic, calligraphic, or medical images), and less affected by the sample size, suggesting that the optimal network structure is data-driven, not sample size driven. After network structure optimization, the convolutional neural network could achieve 91.13% accuracy with only 500 samples, 93.66% accuracy with only 1000 samples for the MNIST dataset and 94.10% accuracy with only 3300 samples for the Mitosis (microscopic) dataset. These results indicate the primary importance of the network structure and the nature of the data in facing the Small Data challenge.
Collapse
Affiliation(s)
- Rhett N D'souza
- Department of Electrical Engineering and Computer Science, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
| | - Po-Yao Huang
- Language Technologies Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Fang-Cheng Yeh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Holdbrook DA, Singh M, Choudhury Y, Kalaw EM, Koh V, Tan HS, Kanesvaran R, Tan PH, Peng JYS, Tan MH, Lee HK. Automated Renal Cancer Grading Using Nuclear Pleomorphic Patterns. JCO Clin Cancer Inform 2019; 2:1-12. [PMID: 30652593 DOI: 10.1200/cci.17.00100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Nuclear pleomorphic patterns are essential for Fuhrman grading of clear cell renal cell carcinoma (ccRCC). Manual observation of renal histopathologic slides may lead to subjective and inconsistent assessment between pathologists. An automated, image-based system that classifies ccRCC slides by quantifying nuclear pleomorphic patterns in an objective and consistent interpretable fashion can aid pathologists in histopathologic assessment. METHODS In the current study, histopathologic tissue slides of 59 patients with ccRCC who underwent surgery at Singapore General Hospital were assembled retrospectively. An automated image classification pipeline detects and analyzes prominent nucleoli in ccRCC images to classify them as either low (Fuhrman grade 1 and 2) or high (Fuhrman grade 3 and 4). The pipeline uses machine learning and image pixel intensity-based feature extraction techniques for nuclear analysis. We trained classification systems that concurrently analyze different permutations of multiple prominent nucleoli image patches. RESULTS Given the parameters for feature combination and extraction, we present experimental results across various configurations for the classification of a given ccRCC histopathologic image. We also demonstrate that the image score used by the pipeline, termed fraction value, is correlated ( R = 0.59) with an existing multigene assay-based scoring system that has previously been demonstrated to be a strong indicator of prognosis in patients with ccRCC. CONCLUSION The current method provides an objective and fully automated way by which to process pathologic slides. The correlation study with a multigene assay-based scoring system also allows us to provide quantitative interpretation for already established nuclear pleomorphic patterns in ccRCC. This method can be extended to other cancers whose corresponding grading systems use nuclear pattern information.
Collapse
Affiliation(s)
- Daniel Aitor Holdbrook
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Malay Singh
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Yukti Choudhury
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Emarene Mationg Kalaw
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Valerie Koh
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Hui Shan Tan
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Ravindran Kanesvaran
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Puay Hoon Tan
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - John Yuen Shyi Peng
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Min-Han Tan
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Hwee Kuan Lee
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| |
Collapse
|
6
|
Ren J, Karagoz K, Gatza ML, Singer EA, Sadimin E, Foran DJ, Qi X. Recurrence analysis on prostate cancer patients with Gleason score 7 using integrated histopathology whole-slide images and genomic data through deep neural networks. J Med Imaging (Bellingham) 2018; 5:047501. [PMID: 30840742 PMCID: PMC6237203 DOI: 10.1117/1.jmi.5.4.047501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer is the most common nonskin-related cancer, affecting one in seven men in the United States. Gleason score, a sum of the primary and secondary Gleason patterns, is one of the best predictors of prostate cancer outcomes. Recently, significant progress has been made in molecular subtyping prostate cancer through the use of genomic sequencing. It has been established that prostate cancer patients presented with a Gleason score 7 show heterogeneity in both disease recurrence and survival. We built a unified system using publicly available whole-slide images and genomic data of histopathology specimens through deep neural networks to identify a set of computational biomarkers. Using a survival model, the experimental results on the public prostate dataset showed that the computational biomarkers extracted by our approach had hazard ratio as 5.73 and C -index as 0.74, which were higher than standard clinical prognostic factors and other engineered image texture features. Collectively, the results of this study highlight the important role of neural network analysis of prostate cancer and the potential of such approaches in other precision medicine applications.
Collapse
Affiliation(s)
- Jian Ren
- Rutgers, the State University of New Jersey, Department of Electrical and Computer Engineering, Piscataway, New Jersey, United States
| | - Kubra Karagoz
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, New Brunswick, New Jersey, United States
| | - Michael L. Gatza
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, New Brunswick, New Jersey, United States
| | - Eric A. Singer
- Rutgers Cancer Institute of New Jersey, Section of Urologic Oncology, New Brunswick, New Jersey, United States
| | - Evita Sadimin
- Rutgers Cancer Institute of New Jersey, Department of Pathology and Laboratory Medicine, New Brunswick, New Jersey, United States
| | - David J. Foran
- Rutgers Cancer Institute of New Jersey, Department of Pathology and Laboratory Medicine, New Brunswick, New Jersey, United States
| | - Xin Qi
- Rutgers Cancer Institute of New Jersey, Department of Pathology and Laboratory Medicine, New Brunswick, New Jersey, United States
| |
Collapse
|
7
|
Abstract
Digitization of glass slides of surgical pathology samples facilitates a number of value-added capabilities beyond what a pathologist could previously do with a microscope. Image analysis is one of the most fundamental opportunities to leverage the advantages that digital pathology provides. The ability to quantify aspects of a digital image is an extraordinary opportunity to collect data with exquisite accuracy and reliability. In this review, we describe the history of image analysis in pathology and the present state of technology processes as well as examples of research and clinical use.
Collapse
|
8
|
Abstract
The fact that lung cancer is a heterogeneous disease suggests that there is a high likelihood that effective lung cancer biomarkers will need to address patient-specific molecular defects, clinical characters, and aspects of the tumor microenvironment. In this transition, clinical bioinformatics tools and resources are the most appropriate means to improve the analysis, as major biological databases are now containing clinical data alongside genomics, proteomics, and other biological data. Clinical bioinformatics comprises a series of concepts and approaches that have been used successfully both to delineate novel biological mechanisms and to drive translational advances in individualized healthcare. In this article, we outline several of emerging clinical bioinformatics-based strategies as they apply specifically to lung cancer.
Collapse
Affiliation(s)
- Duojiao Wu
- Zhongshan Hospital of Fudan University, Biomedical Research Center, Shanghai Institute of Clinical Bioinformatics, Fucan University Center for Clinical Bioinformatics, Shanghai, 200032, China
| | | |
Collapse
|
9
|
Yeh FC, Liu L, Hitchens TK, Wu YL. Mapping immune cell infiltration using restricted diffusion MRI. Magn Reson Med 2016; 77:603-612. [PMID: 26843524 DOI: 10.1002/mrm.26143] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE Diffusion MRI provides a noninvasive way to assess tissue microstructure. Based on diffusion MRI, we propose a model-free method called restricted diffusion imaging (RDI) to quantify restricted diffusion and correlate it with cellularity. THEORY AND METHODS An analytical relation between q-space signals and the density of restricted spins was derived to quantify restricted diffusion. A phantom study was conducted to investigate the performance of RDI, and RDI was applied to an animal study to assess immune cell infiltration in myocardial tissues with ischemia-reperfusion injury. RESULTS Our phantom study showed a correlation coefficient of 0.998 between cell density and the restricted diffusion quantified by RDI. The animal study also showed that the high-value regions in RDI matched well with the macrophage infiltration areas in the H&E stained slides. In comparison with diffusion tensor imaging (DTI), RDI exhibited its outperformance to detect macrophage infiltration and delineate inflammatory myocardium. CONCLUSION RDI can be used to reveal cell density and detect immune cell infiltration. RDI exhibits better specificity than the diffusivity measurement derived from DTI. Magn Reson Med 77:603-612, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Fang-Cheng Yeh
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Li Liu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yijen L Wu
- Rangos Research Center Animal Imaging Core, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Yeh FC, Parwani AV, Pantanowitz L, Ho C. Automated grading of renal cell carcinoma using whole slide imaging. J Pathol Inform 2014; 5:23. [PMID: 25191622 PMCID: PMC4141422 DOI: 10.4103/2153-3539.137726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/08/2014] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Recent technology developments have demonstrated the benefit of using whole slide imaging (WSI) in computer-aided diagnosis. In this paper, we explore the feasibility of using automatic WSI analysis to assist grading of clear cell renal cell carcinoma (RCC), which is a manual task traditionally performed by pathologists. MATERIALS AND METHODS Automatic WSI analysis was applied to 39 hematoxylin and eosin-stained digitized slides of clear cell RCC with varying grades. Kernel regression was used to estimate the spatial distribution of nuclear size across the entire slides. The analysis results were correlated with Fuhrman nuclear grades determined by pathologists. RESULTS The spatial distribution of nuclear size provided a panoramic view of the tissue sections. The distribution images facilitated locating regions of interest, such as high-grade regions and areas with necrosis. The statistical analysis showed that the maximum nuclear size was significantly different (P < 0.001) between low-grade (Grades I and II) and high-grade tumors (Grades III and IV). The receiver operating characteristics analysis showed that the maximum nuclear size distinguished high-grade and low-grade tumors with a false positive rate of 0.2 and a true positive rate of 1.0. The area under the curve is 0.97. CONCLUSION The automatic WSI analysis allows pathologists to see the spatial distribution of nuclei size inside the tumors. The maximum nuclear size can also be used to differentiate low-grade and high-grade clear cell RCC with good sensitivity and specificity. These data suggest that automatic WSI analysis may facilitate pathologic grading of renal tumors and reduce variability encountered with manual grading.
Collapse
Affiliation(s)
- Fang-Cheng Yeh
- Department of Biomedical Engineering, Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA ; Department of Biological Science, Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Anil V Parwani
- Department of Pathology, Division of Pathology Informatics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Liron Pantanowitz
- Department of Pathology, Division of Pathology Informatics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Chien Ho
- Department of Biomedical Engineering, Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA ; Department of Biological Science, Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|