1
|
Schulte SJ, Fornace ME, Hall JK, Shin GJ, Pierce NA. HCR spectral imaging: 10-plex, quantitative, high-resolution RNA and protein imaging in highly autofluorescent samples. Development 2024; 151:dev202307. [PMID: 38415752 PMCID: PMC10941662 DOI: 10.1242/dev.202307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/21/2023] [Indexed: 02/29/2024]
Abstract
Signal amplification based on the mechanism of hybridization chain reaction (HCR) provides a unified framework for multiplex, quantitative, high-resolution imaging of RNA and protein targets in highly autofluorescent samples. With conventional bandpass imaging, multiplexing is typically limited to four or five targets owing to the difficulty in separating signals generated by fluorophores with overlapping spectra. Spectral imaging has offered the conceptual promise of higher levels of multiplexing, but it has been challenging to realize this potential in highly autofluorescent samples, including whole-mount vertebrate embryos. Here, we demonstrate robust HCR spectral imaging with linear unmixing, enabling simultaneous imaging of ten RNA and/or protein targets in whole-mount zebrafish embryos and mouse brain sections. Further, we demonstrate that the amplified and unmixed signal in each of the ten channels is quantitative, enabling accurate and precise relative quantitation of RNA and/or protein targets with subcellular resolution, and RNA absolute quantitation with single-molecule resolution, in the anatomical context of highly autofluorescent samples.
Collapse
Affiliation(s)
- Samuel J. Schulte
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark E. Fornace
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John K. Hall
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grace J. Shin
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Niles A. Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
2
|
Schulte SJ, Fornace ME, Hall JK, Pierce NA. HCR spectral imaging: 10-plex, quantitative, high-resolution RNA and protein imaging in highly autofluorescent samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555626. [PMID: 37693627 PMCID: PMC10491186 DOI: 10.1101/2023.08.30.555626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Signal amplification based on the mechanism of hybridization chain reaction (HCR) provides a unified framework for multiplex, quantitative, high-resolution imaging of RNA and protein targets in highly autofluorescent samples. With conventional bandpass imaging, multiplexing is typically limited to four or five targets due to the difficulty in separating signals generated by fluorophores with overlapping spectra. Spectral imaging has offered the conceptual promise of higher levels of multiplexing, but it has been challenging to realize this potential in highly autofluorescent samples including whole-mount vertebrate embryos. Here, we demonstrate robust HCR spectral imaging with linear unmixing, enabling simultaneous imaging of 10 RNA and/or protein targets in whole-mount zebrafish embryos and mouse brain sections. Further, we demonstrate that the amplified and unmixed signal in each of 10 channels is quantitative, enabling accurate and precise relative quantitation of RNA and/or protein targets with subcellular resolution, and RNA absolute quantitation with single-molecule resolution, in the anatomical context of highly autofluorescent samples. SUMMARY Spectral imaging with signal amplification based on the mechanism of hybridization chain reaction enables robust 10-plex, quantitative, high-resolution imaging of RNA and protein targets in whole-mount vertebrate embryos and brain sections.
Collapse
|
3
|
Liu J, Wu X, Xu C, Ma M, Zhao J, Li M, Yu Q, Hao X, Wang G, Wei B, Xia N, Dong Q. A Novel Method for Observing Tumor Margin in Hepatoblastoma Based on Microstructure 3D Reconstruction. Fetal Pediatr Pathol 2022; 41:371-380. [PMID: 32969743 DOI: 10.1080/15513815.2020.1822965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective: We investigated three-dimensional (3 D) reconstruction for the assessment of the tumor margin microstructure of hepatoblastoma (HB). Methods: Eleven surgical resections of childhood hepatoblastomas obtained between September 2018 and December 2019 were formalin-fixed, paraffin-embedded, serially sectioned at 4 μm, stained with hematoxylin and eosin (every 19th and 20th section stained with alpha-fetoprotein and glypican 3), and the digital images of all sections were acquired at 100× followed by image registration using the B-spline based method with modified residual complexity. Reconstruction was performed using 3 D Slicer software. Results: The reconstructed orthogonal 3 D images clearly presented the internal microstructure of the tumor margin. The rendered 3 D image could be rotated at any angle. Conclusions: Microstructure 3 D reconstruction is feasible for observing the pathological structure of the HB tumor margin.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.,Department of Pediatric Surgery, Yijishan Hospital of Wannan Medical College, Wannan Medical College, Wuhu 246400, China
| | - XiongWei Wu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Chongzhi Xu
- College of Computer Science and Technology, Qingdao University, Qingdao 266000, China
| | - Mingdi Ma
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Jie Zhao
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Min Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - QiYue Yu
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - XiWei Hao
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - GuoDong Wang
- College of Computer Science and Technology, Qingdao University, Qingdao 266000, China
| | - Bin Wei
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Nan Xia
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Qian Dong
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| |
Collapse
|
4
|
Schwarzkopf M, Liu MC, Schulte SJ, Ives R, Husain N, Choi HMT, Pierce NA. Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high-resolution immunohistochemistry and in situ hybridization. Development 2021; 148:dev199847. [PMID: 35020875 PMCID: PMC8645210 DOI: 10.1242/dev.199847] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
RNA in situ hybridization based on the mechanism of the hybridization chain reaction (HCR) enables multiplexed, quantitative, high-resolution RNA imaging in highly autofluorescent samples, including whole-mount vertebrate embryos, thick brain slices and formalin-fixed paraffin-embedded tissue sections. Here, we extend the benefits of one-step, multiplexed, quantitative, isothermal, enzyme-free HCR signal amplification to immunohistochemistry, enabling accurate and precise protein relative quantitation with subcellular resolution in an anatomical context. Moreover, we provide a unified framework for simultaneous quantitative protein and RNA imaging with one-step HCR signal amplification performed for all target proteins and RNAs simultaneously.
Collapse
Affiliation(s)
- Maayan Schwarzkopf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mike C. Liu
- Molecular Instruments, Los Angeles, CA 90041, USA
| | - Samuel J. Schulte
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rachel Ives
- Molecular Instruments, Los Angeles, CA 90041, USA
| | - Naeem Husain
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Niles A. Pierce
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
5
|
Yagi Y, Aly RG, Tabata K, Barlas A, Rekhtman N, Eguchi T, Montecalvo J, Hameed M, Manova-Todorova K, Adusumilli PS, Travis WD. Three-Dimensional Histologic, Immunohistochemical, and Multiplex Immunofluorescence Analyses of Dynamic Vessel Co-Option of Spread Through Air Spaces in Lung Adenocarcinoma. J Thorac Oncol 2020; 15:589-600. [PMID: 31887430 PMCID: PMC7288352 DOI: 10.1016/j.jtho.2019.12.112] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Spread through air spaces (STAS) is a method of invasion in lung adenocarcinoma and is associated with tumor recurrence and poor survival. The spatial orientation of STAS cells in the lung alveolar parenchyma is not known. The aim of this study was to use high-resolution and high-quality three-dimensional (3D) reconstruction of images from immunohistochemical (IHC) and multiplex immunofluorescence (IF) experiments to understand the spatial architecture of tumor cell clusters by STAS in the lung parenchyma. METHODS Four lung adenocarcinomas, three micropapillary-predominant and one solid predominant adenocarcinoma subtypes, were investigated. A 3D reconstruction image was created from formalin-fixed, paraffin-embedded blocks. A total of 350 serial sections were obtained and subjected to hematoxylin and eosin (100 slides), IHC (200 slides), and multiplex IF staining (50 slides) with the following antibodies: cluster of differentiation 31, collagen type IV, thyroid transcription factor-1, and E-cadherin. Whole slide images were reconstructed into 3D images for evaluation. RESULTS Serial 3D image analysis by hematoxylin and eosin, IHC, and IF staining revealed that the micropapillary clusters and solid nests of STAS are focally attached to the alveolar walls, away from the main tumor. CONCLUSIONS Our 3D reconstructions found that STAS tumor cells can attach to the alveolar walls rather than appearing free floating, as seen on the two-dimensional sections. This suggests that the tumor cells detach from the main tumor, migrate through air spaces, and reattach to the alveolar walls through vessel co-option, allowing them to survive and grow. This may explain the higher recurrence rate and worse survival of patients with STAS-positive tumors who undergo limited resection than those who undergo lobectomy.
Collapse
Affiliation(s)
- Yukako Yagi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rania G Aly
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Alexandria University, Alexandria, Egypt
| | - Kazuhiro Tabata
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Nagasaki University Hospital, Nagasaki, Japan
| | - Afsar Barlas
- Molecular Cytology, Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Takashi Eguchi
- Thoracic Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York; Division of Thoracic Surgery, Department of Surgery, Shinshu University, Matsumoto, Japan
| | - Joeseph Montecalvo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Henry Ford Hospital System, Detroit, Michigan
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katia Manova-Todorova
- Molecular Cytology, Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Thoracic Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
6
|
Bellozi PMQ, Gomes GF, de Oliveira LR, Olmo IG, Vieira ÉLM, Ribeiro FM, Fiebich BL, de Oliveira ACP. NVP-BEZ235 (Dactolisib) Has Protective Effects in a Transgenic Mouse Model of Alzheimer's Disease. Front Pharmacol 2019; 10:1345. [PMID: 31798451 PMCID: PMC6864823 DOI: 10.3389/fphar.2019.01345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/24/2019] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease and the main cause of dementia. Its major symptom is memory loss, which is a result of neuronal cell death, which is accompanied by neuroinflammation. Some studies indicate the overactivation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanistic target of rapamycin (mTOR) pathway in this disease, being, thus, a potential target for pharmacological treatment. Here, we used a transgenic mouse model of AD that expresses a mutant amyloid-β precursor protein (T41 mice) to investigate the effects of dactolisib (alternative name: NVP-BEZ235, abbreviation BEZ), a dual PI3K/mTOR inhibitor. Ten-months-old T41 animals were treated for 14 days with BEZ or vehicle via oral gavage and then submitted to social memory, open field and contextual conditioned fear tests. Hippocampal slices were prepared and Aβ1-42 content, NeuN, Iba-1, CD68 and GFAP were evaluated. Tissues were further processed to evaluate cytokines levels through cytometric bead array. The treatment with BEZ (5 mg/kg) reduced social memory impairment in T41 mice. However, BEZ did not have any effect on altered Aβ levels, NeuN, or GFAP staining. The drug reduced the CD68/Iba-1 ratio in CA3 region of hippocampus. Finally, BEZ diminished IL-10 levels in T41 mice. Thus, although its mechanisms are not clear, BEZ protects against memory impairment, reduces microglial activation and reestablishes IL-10 levels, revealing beneficial effects, which should be further investigated for the treatment of AD.
Collapse
Affiliation(s)
| | - Giovanni Freitas Gomes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Isabella Guimarães Olmo
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fabíola Mara Ribeiro
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg im Breisgau, Germany
| | | |
Collapse
|
7
|
Prinz JC. Melanocytes: Target Cells of an HLA-C*06:02-Restricted Autoimmune Response in Psoriasis. J Invest Dermatol 2017; 137:2053-2058. [PMID: 28941475 DOI: 10.1016/j.jid.2017.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022]
Abstract
HLA-C*06:02 is the main psoriasis risk allele. By the unbiased analysis of a Vα3S1/Vβ13S1 T-cell receptor from pathogenic psoriatic CD8+ T cells, we had recently proven that HLA-C*06:02 directs an autoimmune response against melanocytes through autoantigen presentation in psoriasis and identified ADAMTSL5 as a melanocyte autoantigen. We concluded that psoriasis is based on a melanocyte-specific immune response and that HLA-C*06:02 may predispose to psoriasis via this newly identified autoimmune pathway. Understanding this pathway, however, requires more detailed explanation. It is based on the fact that an HLA class I-restricted autoreactive CD8+ T-cell response must be directed against a particular target cell type, because HLA class I molecules present peptide antigens generated from cytoplasmic (i.e., intracellular) proteins. This review summarizes the findings on the melanocyte-specific autoimmune response in the context of the immune mechanisms related to HLA function and T-cell receptor-antigen recognition. Identifying melanocytes as target cells of the psoriatic immune response now explains psoriasis as a primary autoimmune skin disease.
Collapse
Affiliation(s)
- Jörg Christoph Prinz
- Department of Dermatology, University Clinics, Ludwig Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
8
|
Hashimoto N, Bautista PA, Haneishi H, Snuderl M, Yagi Y. Development of a 2D Image Reconstruction and Viewing System for Histological Images from Multiple Tissue Blocks: Towards High-Resolution Whole-Organ 3D Histological Images. Pathobiology 2016; 83:127-39. [PMID: 27100217 DOI: 10.1159/000443278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
High-resolution 3D histology image reconstruction of the whole brain organ starts from reconstructing the high-resolution 2D histology images of a brain slice. In this paper, we introduced a method to automatically align the histology images of thin tissue sections cut from the multiple paraffin-embedded tissue blocks of a brain slice. For this method, we employed template matching and incorporated an optimization technique to further improve the accuracy of the 2D reconstructed image. In the template matching, we used the gross image of the brain slice as a reference to the reconstructed 2D histology image of the slice, while in the optimization procedure, we utilized the Jaccard index as the metric of the reconstruction accuracy. The results of our experiment on the initial 3 different whole-brain tissue slices showed that while the method works, it is also constrained by tissue deformations introduced during the tissue processing and slicing. The size of the reconstructed high-resolution 2D histology image of a brain slice is huge, and designing an image viewer that makes particularly efficient use of the computing power of a standard computer used in our laboratories is of interest. We also present the initial implementation of our 2D image viewer system in this paper.
Collapse
|