1
|
Nasiri Z, Hosseinizadeh ZS, Sayyadi Z, Alipour H. Entomological survey of malaria vectors in Dashtestan County, South of Iran. J Parasit Dis 2023; 47:161-166. [PMID: 36910314 PMCID: PMC9998789 DOI: 10.1007/s12639-022-01555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Anopheline mosquitoes are responsible for transmission of some diseases such as malaria. This study was carried out in five villages of Dashtestan county, Bushehr province, south of Iran with mountainous and plain areas. Anopheles larvae were sampled once a month from May to July 2021 by dipping method using standard dippers. Adults were captured by the total catch technique. In this study, 1062 Anopheles mosquitoes were collected including 850 adults and 212 larvae. Samples were A. superpictus, A. stephensi, A. dthali and A. fluviatilis. The dominant species at all sites (larvae and adults) were A. dthali (31.35%), A. superpictus (28.93%), A. stephensi (27.77%), and A. fluviatilis (11.95%), respectively. Among adults, A. stephensi was the most frequent species, but among larvae, A. dthali was the dominant species. The highest number of A. dthali was captured from Dalaki village with 35%, while A. superpictus and A. fluviatilis were not caught at this station. The minimum collected adults of all species occurred in Bashirabad. This result showed that A. stephensi plays an important role in south Iran, which is under the elimination phase. The fauna and niches of Anopheles has different patterns depending on ecological, climatic, and topographic features. These items affect host preferences, feeding behaviors, and distribution of these species. A monthly or annual entomological survey is necessary in regions with mobile populations since imported malaria is a problematic issue in the elimination programs of Iran.
Collapse
Affiliation(s)
- Zahra Nasiri
- Student Research Committee and Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra-Sadat Hosseinizadeh
- Student Research Committee and Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Sayyadi
- Student Research Committee and Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Yoon J, Tak JH. Synergistic modes of interaction between the plant essential oils and the respiratory blocker chlorfenapyr. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105274. [PMID: 36464379 DOI: 10.1016/j.pestbp.2022.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Plant essential oils are widely acknowledged for their insecticidal activities and synergistic interaction with conventional insecticides, but their insecticidal modes of action and the mechanism of synergy remain less understood. In this study, electrophysiological screenings on the larval central nervous system (CNS) of the common fruit fly, Drosophila melanogaster, and the housefly, Musca domestica, were conducted to identify the neurophysiological effects of the oils and their major constituents. Several oils changed the firing rate of the central motor neurons, and four oils were selected to determine their major active compounds. Eugenol and thymol (87.2% and 31.1% in clove bud and thyme oils, respectively) were inhibitory to the nerve firing rates of the CNS, and exhibited synergistic toxicity to the housefly when blended with a respiratory blocking pyrrole insecticide, chlorfenapyr. On the other hand, trans-cinnamaldehyde and terpinen-4-ol (74.6% and 52.0% in cinnamon and teatree oils) seemed excitatory to the nerves, and displayed antagonistic interaction to chlorfenapyr in their insecticidal activity. Chlorfenapyr led to ATP depletion in the insects, and the inhibitory compounds accelerated the process. On the other hand, nerve-excitatory compounds seemed to nullify the depletion. This was further confirmed with the two CNS-excitatory synthetic insecticides, permethrin and chlorpyrifos, that they exhibited antagonistic toxicity when mixed with chlorfenapyr. Meanwhile, the synergy between the inhibitory compounds and chlorfenapyr was diminished when ATP was artificially injected, indicating that the bioenergetic effects of neuroinhibitors are responsible for their synergistic interactions.
Collapse
Affiliation(s)
- Junho Yoon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Jun-Hyung Tak
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
3
|
Yohana R, Chisulumi PS, Kidima W, Tahghighi A, Maleki-Ravasan N, Kweka EJ. Anti-mosquito properties of Pelargonium roseum (Geraniaceae) and Juniperus virginiana (Cupressaceae) essential oils against dominant malaria vectors in Africa. Malar J 2022; 21:219. [PMID: 35836226 PMCID: PMC9284854 DOI: 10.1186/s12936-022-04220-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND More than 90% of malaria cases occur in Africa where the disease is transmitted by Anopheles gambiae and Anopheles arabiensis. This study evaluated the anti-mosquito properties of Juniperus virginiana (JVO) and Pelargonium roseum (PRO) essential oils (EOs) against larvae and adults of An. gambiae sensu lato (s.l.) from East Africa in laboratory and semi-field conditions. METHODS EOs was extracted from the aerial green parts of Asian herbs by hydrodistillation. Their constituents were characterized by gas chromatography-mass spectrometry (GC-MS). Larvicidal activities of JVO, PRO, and PRO components [citronellol (CO), linalool (LO), and geraniol (GO)] were investigated against An. gambiae sensu stricto (s.s.). The percentage of knockdown effects and mortality rates of all oils were also evaluated in the adults of susceptible An. gambiae s.s. and permethrin-resistant An. arabiensis. RESULTS GC-MS analyses identified major constituents of JVO (sabinene, dl-limonene, β-myrcene, bornyl acetate, and terpinen-4-ol) and PRO (citronellol, citronellyl formate, L-menthone, linalool, and geraniol). Oils showed higher larvicidal activity in the laboratory than semi-field trials. The LC50 values for JVO/PRO were computed as 10.82-2.89/7.13-0.9 ppm and 10.75-9.06/13.63-8.98 ppm in laboratory and semi-field environments, respectively at exposure time of 24-72 h. The percentage of knockdown effects of the oils were also greater in An. gambiae s.s. than in An. arabiensis. Filter papers impregnated with JVO (100 ppm) and PRO (25 ppm) displayed 100% mortality rates for An. gambiae s.s. and 3.75% and 90% mortality rates, for An. arabiensis populations, respectively. Each component of CO, LO, and GO exhibited 98.13%, 97.81%, and 87.5%, respectively, and a mixture of the PRO components indicated 94.69% adult mortality to permethrin-resistant An. arabiensis. CONCLUSIONS The findings of this study show that PRO and its main constituents, compared to JVO, have higher anti-mosquito properties in terms of larvicidal, knockdown, and mortality when applied against susceptible laboratory and resistant wild populations of An. gambiae s.l. Consequently, these oils have the potential for the development of new, efficient, safe, and affordable agents for mosquito control.
Collapse
Affiliation(s)
- Revocatus Yohana
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Paulo S Chisulumi
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Winifrida Kidima
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Azar Tahghighi
- Laboratory of Medicinal Chemistry, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Eliningaya J Kweka
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health Sciences, Mwanza, Tanzania.
- Tropical Pesticides Research Institute, Division of Livestock and Human Disease Vector Control Mosquito Section, Arusha, Tanzania.
| |
Collapse
|
4
|
Liu Z, Li QX, Song B. Pesticidal Activity and Mode of Action of Monoterpenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4556-4571. [PMID: 35380824 DOI: 10.1021/acs.jafc.2c00635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic pesticides are often associated with issues such as pest resistance, persistent residue, nontarget toxicity, and environmental issues. Therefore, the research and development of novel, safe, and effective pesticides has become a focus in pesticide discovery. Monoterpenes are secondary plant metabolites that commonly have multiple action targets and have been used in aromatherapy, alternative medicine, and food industries. Some are highly potent and stereoselective. They can potentially be botanical pesticides and serve as lead candidates for the design and synthesis of new monoterpenoid pesticides for agricultural applications. This article reviews publications and patents found in SciFinder Scholar between 2000 and May 2021 on monoterpenes and mainly focuses on pesticidal activities of frequently studied monoterpenes and their modes of action. The presented information and our views are hopefully useful for the development of monoterpenes as biopesticides and monoterpenoid pesticides.
Collapse
Affiliation(s)
- Zhengjun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou 561000, P. R. China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. China
| |
Collapse
|
5
|
Huang M, Duan W, Chen N, Lin G, Wang X. Synthesis and Antitumor Evaluation of Menthone-Derived Pyrimidine-Urea Compounds as Potential PI3K/Akt/mTOR Signaling Pathway Inhibitor. Front Chem 2022; 9:815531. [PMID: 35186896 PMCID: PMC8852737 DOI: 10.3389/fchem.2021.815531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
A series of novel menthone derivatives bearing pyrimidine and urea moieties was designed and synthesized to explore more potent natural product-derived antitumor agents. The structures of the target compounds were confirmed by FTIR, NMR, and HRMS. The in vitro antitumor activity was tested by standard methyl thiazolytetrazolium assay and showed that 4i, 4g, 4s, and 4m are the best compounds with IC50 values of 6.04 ± 0.62µM, 3.21 ± 0.67µM, 19.09 ± 0.49µM, and 18.68 ± 1.53µM, against Hela, MGC-803, MCF-7, and A549, respectively. The results of the preliminary action mechanism studies showed that compound 4i, the representative compound, could induce cell apoptosis in Hela cells in a dose-dependent manner and might arrest the cell cycle in the G2/M phase. Furthermore, the results of network pharmacology prediction and Western blot experiments indicated that compound 4i might inhibit Hela cells through inhibit PI3K/Akt/mTOR signaling pathway. The binding modes and the binding sites interactions between compound 4i and the target proteins were predicted preliminarily by the molecular docking method.
Collapse
Affiliation(s)
- Mei Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning, China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- *Correspondence: Wengui Duan, ; Naiyuan Chen,
| | - Naiyuan Chen
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- *Correspondence: Wengui Duan, ; Naiyuan Chen,
| | - Guishan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Xiu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Bakhshi H, Fazlalipour M, Dadgar-Pakdel J, Zakeri S, Raz A, Failloux AB, Dinparast Djadid N. Developing a Vaccine to Block West Nile Virus Transmission: In Silico Studies, Molecular Characterization, Expression, and Blocking Activity of Culex pipiens mosGCTL-1. Pathogens 2021; 10:pathogens10020218. [PMID: 33671430 PMCID: PMC7921969 DOI: 10.3390/pathogens10020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mosquito galactose-specific C-type lectins (mosGCTLs), such as mosGCTL-1, act as ligands to facilitate the invasion of flaviviruses like West Nile virus (WNV). WNV interacts with the mosGCTL-1 of Aedes aegypti (Culicidae) and facilitates the invasion of this virus. Nevertheless, there is no data about the role of mosGCTL-1 as a transmission-blocking vaccine candidate in Culex pipiens, the most abundant Culicinae mosquito in temperate regions. METHODS Adult female Cx. pipiens mosquitoes were experimentally infected with a WNV infectious blood meal, and the effect of rabbit anti-rmosGCTL-1 antibodies on virus replication was evaluated. Additionally, in silico studies such as the prediction of protein structure, homology modeling, and molecular interactions were carried out. RESULTS We showed a 30% blocking activity of Cx. pipiens mosGCTL-1 polyclonal antibodies (compared to the 10% in the control group) with a decrease in infection rates in mosquitoes at day 5 post-infection, suggesting that there may be other proteins in the midgut of Cx. pipiens that could act as cooperative-receptors for WNV. In addition, docking results revealed that WNV binds with high affinity, to the Culex mosquito lectin receptors. CONCLUSIONS Our results do not support the idea that mosGCTL-1 of Cx. pipiens primarily interacts with WNV to promote viral infection, suggesting that other mosGCTLs may act as primary infection factors in Cx. pipiens.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
| | - Mehdi Fazlalipour
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran;
| | - Javad Dadgar-Pakdel
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
- Trauma Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan Abad Square, Imam Khomeini Avenue, Tehran 1136746911, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
- Correspondence: (A.R.); (A.-B.F.); (N.D.D.); Tel.: +98-(0)21-64-11-24-62 (A.R.); +33-(0)1-40-61-36-17 (A.-B.F.); +98-(0)21-64-11-24-62 (N.D.D.)
| | - Anna-Bella Failloux
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25 rue Dr. Roux, CEDEX 15, 75724 Paris, France
- Correspondence: (A.R.); (A.-B.F.); (N.D.D.); Tel.: +98-(0)21-64-11-24-62 (A.R.); +33-(0)1-40-61-36-17 (A.-B.F.); +98-(0)21-64-11-24-62 (N.D.D.)
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
- Correspondence: (A.R.); (A.-B.F.); (N.D.D.); Tel.: +98-(0)21-64-11-24-62 (A.R.); +33-(0)1-40-61-36-17 (A.-B.F.); +98-(0)21-64-11-24-62 (N.D.D.)
| |
Collapse
|
7
|
Dehghankar M, Maleki-Ravasan N, Tahghighi A, Karimian F, Karami M. Bioactivities of rose-scented geranium nanoemulsions against the larvae of Anopheles stephensi and their gut bacteria. PLoS One 2021; 16:e0246470. [PMID: 33556110 PMCID: PMC7870081 DOI: 10.1371/journal.pone.0246470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/19/2021] [Indexed: 11/24/2022] Open
Abstract
Anopheles stephensi with three different biotypes is a major vector of malaria in Asia. It breeds in a wide range of habitats. Therefore, safer and more sustainable methods are needed to control its immature stages rather than chemical pesticides. The larvicidal and antibacterial properties of the Pelargonium roseum essential oil (PREO) formulations were investigated against mysorensis and intermediate forms of An. stephensi in laboratory conditions. A series of nanoemulsions containing different amounts of PREO, equivalent to the calculated LC50 values for each An. stephensi form, and various quantities of surfactants and co-surfactants were developed. The physical and morphological properties of the most lethal formulations were also determined. PREO and its major components, i.e. citronellol (21.34%), L-menthone (6.41%), linalool (4.214%), and geraniol (2.19%), showed potent larvicidal activity against the studied mosquitoes. The LC50/90 values for mysorensis and intermediate forms were computed as 11.44/42.42 ppm and 12.55/47.69 ppm, respectively. The F48/F44 nanoformulations with 94% and 88% lethality for the mysorensis and intermediate forms were designated as optimized formulations. The droplet size, polydispersity index, and zeta-potential for F48/F44 were determined as 172.8/90.95 nm, 0.123/0.183, and -1.08/-2.08 mV, respectively. These results were also confirmed by TEM analysis. Prepared formulations displayed antibacterial activity against larval gut bacteria in the following order of decreasing inhibitory: LC90, optimized nanoemulsions, and LC50. PREO-based formulations were more effective against mysorensis than intermediate. Compared to the crude PREO, the overall larvicidal activity of all nanoformulations boosted by 20% and the optimized formulations by 50%. The sensitivity of insect gut bacteria may be a crucial factor in determining the outcome of the effect of toxins on target insects. The formulations designed in the present study may be a good option as a potent and selective larvicide for An. stephensi.
Collapse
Affiliation(s)
- Maryam Dehghankar
- Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (NMR); (AT)
| | - Azar Tahghighi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Laboratory of Medicinal Chemistry, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (NMR); (AT)
| | - Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohsen Karami
- Department of Parasitology and Mycology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|