1
|
Yoo W, Kim S, Garcia M, Mehta S, Sanai N. Evaluation of two-stage designs of Phase 2 single-arm trials in glioblastoma: a systematic review. BMC Med Res Methodol 2022; 22:327. [PMID: 36550391 PMCID: PMC9773486 DOI: 10.1186/s12874-022-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Due to economical and ethical reasons, the two-stage designs have been widely used for Phase 2 single-arm trials in oncology because the designs allow us to stop the trial early if the proposed treatment is likely to be ineffective. Nonetheless, none has examined the usage for published articles that had applied the two-stage designs in Phase 2 single-arm trials in brain tumor. A complete systematic review and discussions for overcoming design issues might be important to better understand why oncology trials have shown low success rates in early phase trials. METHODS We systematically reviewed published single-arm two-stage Phase 2 trials for patients with glioblastoma and high-grade gliomas (including newly diagnosed or recurrent). We also sought to understand how these two-stage trials have been implemented and discussed potential design issues which we hope will be helpful for investigators who work with Phase 2 clinical trials in rare and high-risk cancer studies including Neuro-Oncology. The systematic review was performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-statement. Searches were conducted using the electronic database of PubMed, Google Scholar and ClinicalTrials.gov for potentially eligible publications from inception by two independent researchers up to May 26, 2022. The followings were key words for the literature search as index terms or free-text words: "phase II trials", "glioblastoma", and "two-stage design". We extracted disease type and setting, population, therapeutic drug, primary endpoint, input parameters and sample size results from two-stage designs, and historical control reference, and study termination status. RESULTS Among examined 29 trials, 12 trials (41%) appropriately provided key input parameters and sample size results from two-stage design implementation. Among appropriately implemented 12 trials, discouragingly only 3 trials (10%) explained the reference information of historical control rates. Most trials (90%) used Simon's two-stage designs. Only three studies have been completed for both stages and two out of the three completed studies had shown the efficacy. CONCLUSIONS Right implementation for two-stage design and sample size calculation, transparency of historical control and experimental rates, appropriate selection on primary endpoint, potential incorporation of adaptive designs, and utilization of Phase 0 paradigm might help overcoming the challenges on glioblastoma therapeutic trials in Phase 2 trials.
Collapse
Affiliation(s)
- Wonsuk Yoo
- grid.427785.b0000 0001 0664 3531Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Seongho Kim
- grid.254444.70000 0001 1456 7807Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201 USA
| | - Michael Garcia
- grid.427785.b0000 0001 0664 3531Department of Radiation Oncology, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Shwetal Mehta
- grid.427785.b0000 0001 0664 3531Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Nader Sanai
- grid.427785.b0000 0001 0664 3531Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| |
Collapse
|
2
|
Verma N, Mudge JD, Kasole M, Chen RC, Blanz SL, Trevathan JK, Lovett EG, Williams JC, Ludwig KA. Auricular Vagus Neuromodulation-A Systematic Review on Quality of Evidence and Clinical Effects. Front Neurosci 2021; 15:664740. [PMID: 33994937 PMCID: PMC8120162 DOI: 10.3389/fnins.2021.664740] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The auricular branch of the vagus nerve runs superficially, which makes it a favorable target for non-invasive stimulation techniques to modulate vagal activity. For this reason, there have been many early-stage clinical trials on a diverse range of conditions. These trials often report conflicting results for the same indication. Methods: Using the Cochrane Risk of Bias tool we conducted a systematic review of auricular vagus nerve stimulation (aVNS) randomized controlled trials (RCTs) to identify the factors that led to these conflicting results. The majority of aVNS studies were assessed as having "some" or "high" risk of bias, which makes it difficult to interpret their results in a broader context. Results: There is evidence of a modest decrease in heart rate during higher stimulation dosages, sometimes at above the level of sensory discomfort. Findings on heart rate variability conflict between studies and are hindered by trial design, including inappropriate washout periods, and multiple methods used to quantify heart rate variability. There is early-stage evidence to suggest aVNS may reduce circulating levels and endotoxin-induced levels of inflammatory markers. Studies on epilepsy reached primary endpoints similar to previous RCTs testing implantable vagus nerve stimulation therapy. Preliminary evidence shows that aVNS ameliorated pathological pain but not evoked pain. Discussion: Based on results of the Cochrane analysis we list common improvements for the reporting of results, which can be implemented immediately to improve the quality of evidence. In the long term, existing data from aVNS studies and salient lessons from drug development highlight the need for direct measures of local neural target engagement. Direct measures of neural activity around the electrode will provide data for the optimization of electrode design, placement, and stimulation waveform parameters to improve on-target engagement and minimize off-target activation. Furthermore, direct measures of target engagement, along with consistent evaluation of blinding success, must be used to improve the design of controls-a major source of concern identified in the Cochrane analysis. The need for direct measures of neural target engagement and consistent evaluation of blinding success is applicable to the development of other paresthesia-inducing neuromodulation therapies and their control designs.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Jonah D. Mudge
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Maïsha Kasole
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Rex C. Chen
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Stephan L. Blanz
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | | | - Justin C. Williams
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin – Madison, Madison, WI, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
3
|
Abstract
Despite significant improvement in understanding of molecular underpinnings driving glioblastoma, there is minimal improvement in overall survival of patients. This poor outcome is caused in part by traditional designs of early phase clinical trials, which focus on clinical assessments of drug toxicity and response. Window of opportunity trials overcome this shortcoming by assessing drug-induced on-target molecular alterations in post-treatment human tumor specimens. This article provides an overview of window of opportunity trials, including novel designs for incorporating biologic end points into early stage trials in context of brain tumors, and examples of successfully executed window of opportunity trials for glioblastoma.
Collapse
|
4
|
Verma NK, Mondal D, Bera S. Pharmacological and Cellular Significance of Triazole-Surrogated Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191021114906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
:
Heterocyclic compounds have been at the hierarchy position in academia, and
industrial arena, particularly the compounds containing triazole-core are found to be potent
with a broad range of biological activities. The resistance of triazole ring towards
chemical (acid and base) hydrolysis, oxidative and reductive reaction conditions, metabolic
degradation and its higher aromatic stabilization energy makes it a better heterocyclic
core as therapeutic agents. These triazole-linked compounds are used for clinical purposes
for antifungal, anti-mycobacterium, anticancer, anti-migraine and antidepressant
drugs. Triazole scaffolds are also found to act as a spacer for the sake of covalent attachment
of the high molecular weight bio-macromolecules with an experimental building
blocks to explore structure-function relationships. Herein, several methods and strategies
for the synthesis of compounds with 1,2,3-triazole moiety exploring Hüisgen, Meldal and Sharpless 1,3-dipolar
cycloaddition reaction between azide and alkyne derivatives have been deliberated for a series of representative
compounds. Moreover, this review article highlights in-depth applications of the [3+2]-cycloaddition reaction
for the advances of triazole-containing antibacterial as well as metabolic labelling agents for the in vitro and in
vivo studies on cellular level.
Collapse
Affiliation(s)
- Naimish Kumar Verma
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Dhananjoy Mondal
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Smritilekha Bera
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| |
Collapse
|
6
|
Outcomes and prognostic factors for relapsed or refractory lymphoma patients in phase I clinical trials. Invest New Drugs 2017; 36:62-74. [PMID: 28597151 DOI: 10.1007/s10637-017-0480-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022]
Abstract
Background Although safety and prognostic factors for overall survival (OS) have been extensively studied in Phase I clinical trials on patients with solid tumours, data on lymphoma trials are scarce. Here, we investigated safety, outcomes and prognostic factors in relapsed or refractory lymphoma patients included in a series of Phase I trials. Method and patients All consecutive adult patients with recurrent/refractory lymphoma enrolled in 26 Phase I trials at a single cancer centre in France between January 2008 and June 2016 were retrospectively assessed. Results 133 patients (males: 65%) were included in the analysis. The median (range) age was 65 (23-86). Aggressive non-Hodgkin, indolent non-Hodgkin and Hodgkin types accounted for 64%, 25% and 11% of the patients, respectively. The patients had received a median (range) of 3 (1-13) lines of treatment prior to trial entry. The median [95% confidence interval] progression-free survival and OS times were 3.0 [1.8-3.6] and 17.8 [12.7-30.4] months, respectively. High-grade toxicity (grade 3 or higher, according to the National Cancer Institute's Common Terminology Criteria for Adverse Events classification) was experienced by 56 of the 133 patients (42%) and was related to the investigational drug in 44 of these cases (79%). No toxicity-related deaths occurred. Dose-limiting toxicity (DLT) was encountered in 11 (9%) of the 116 evaluable patients. High-grade toxicity occurred during the DLT period for 34 of the 56 patients (61%) and after the DLT period in the remaining 22 (39%). The main prognostic factors for poor OS were the histological type (i.e. tumour aggressiveness), an elevated serum LDH level, and a low serum albumin level. Early withdrawal from a trial was correlated with the performance status score, the histological type and the serum LDH level. The overall objective response and disease control rates were 24% and 57%, respectively. Conclusion Performance status, LDH, albumin and histological type (tumour aggressiveness) appear to be the most relevant prognostic factors for enrolling Phase I participants with relapsed or refractory lymphoma. 39% of the patients experienced a first high-grade toxic event after the dose-limiting toxicity period, suggesting that the conventional concept of dose-limiting toxicity (designed for chemotherapy) should be redefined in the era of modern cancer therapies.
Collapse
|
7
|
Artemisinin and Its Derivatives as a Repurposing Anticancer Agent: What Else Do We Need to Do? Molecules 2016; 21:molecules21101331. [PMID: 27739410 PMCID: PMC6272993 DOI: 10.3390/molecules21101331] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/30/2016] [Indexed: 02/08/2023] Open
Abstract
Preclinical investigation and clinical experience have provided evidence on the potential anticancer effect of artemisinin and its derivatives (ARTs) in the recent two decades. The major mechanisms of action of ARTs may be due to toxic-free radicals generated by an endoperoxide moiety, cell cycle arrest, induction of apoptosis, and inhibition of tumor angiogenesis. It is very promising that ARTs are expected to be a new class of antitumor drugs of wide spectrum due to their detailed information regarding efficacy and safety. For developing repurposed drugs, many other characteristics of ARTs should be studied, including through further investigations on possible new pathways of anticancer effects, exploration on efficient and specific drug delivery systems-especially crossing biological barriers, and obtaining sufficient data in clinical trials. The aim of this review is to highlight these achievements and propose the potential strategies to develop ARTs as a new class of cancer therapeutic agents.
Collapse
|
9
|
Soloviev D, Lewis D, Honess D, Aboagye E. [(18)F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer 2012; 48:416-24. [PMID: 22209266 DOI: 10.1016/j.ejca.2011.11.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/27/2011] [Indexed: 01/13/2023]
Abstract
The paradigm of drug development is shifting towards early use of imaging biomarkers as surrogate end-points in clinical trials. Quantitative Imaging in Cancer: Connecting Cellular Processes (QuIC-ConCePT) is an initiative to qualify complementary imaging biomarkers (IB) of proliferation, cell death and tumour heterogeneity as possible tools in early phase clinical trials to help pharmaceutical developers in 'go, no-go' decisions early in the process of drug development. One of the IBs is [(18)F]3'-deoxy-3'-fluorothymidine with Positron Emission Tomography (FLT-PET). We review results of recent clinical trials using FLT-PET for monitoring tumour response to drug treatment and discuss the potential and the possible pitfalls of using this IB as a surrogate end-point in early phase clinical trials for assessing tumour response to drug treatment. From first human trial results it seems that the degree of FLT accumulation in tumours is governed not only by the tumour proliferation rate but also by other factors. Nevertheless FLT-PET could potentially be used as a negative predictor of tumour response to chemotherapy, and hence evaluation of this IB is granted in multi-centre clinical trials.
Collapse
Affiliation(s)
- Dmitry Soloviev
- Cancer Research UK, Cambridge Research Institute, Cambridge CB2 0RE, UK.
| | | | | | | |
Collapse
|