1
|
Zhang Z, Wu X, Kong Y, Zou P, Wang Y, Zhang H, Cui G, Zhu W, Chen H. Dynamic Changes and Effects of H 2S, IGF-1, and GH in the Traumatic Brain Injury. Biochem Genet 2024; 62:3821-3840. [PMID: 38233694 DOI: 10.1007/s10528-023-10557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/21/2023] [Indexed: 01/19/2024]
Abstract
The aim of this study was to examine the expression changes of H2S, IGF-1, and GH in traumatic brain injury (TBI) patients and to detect their neuroprotective functions after TBI. In this study, we first collected cerebrospinal fluid (CSF) and plasma from TBI patients at different times after injury and evaluated the concentrations of H2S, IGF-1, and GH. In vitro studies were using the scratch-induced injury model and cell-cell interaction model (HT22 hippocampal neurons co-cultured with LPS-induced BV2 microglia cells). In vivo studies were using the controlled cortical impact (CCI) model in mice. Cell viability was assessed by CCK-8 assay. Pro-inflammatory cytokines expression was determined by qRT-PCR, ELISA, and nitric oxide production. Western blot was performed to assess the expression of CBS, CSE, IGF-1, and GHRH. Moreover, the recovery of TBI mice was evaluated for behavioral function by applying the modified Neurological Severity Score (mNSS), the Rotarod test, and the Morris water maze. We discovered that serum H2S, CSF H2S, and serum IGF-1 concentrations were all adversely associated with the severity of the TBI, while the concentrations of IGF-1 and GH in CSF and GH in the serum were all positively related to TBI severity. Experiments in vitro and in vivo indicated that treatment with NaHS (H2S donor), IGF-1, and MR-409 (GHRH agonist) showed protective effects after TBI. This study gives novel information on the functions of H2S, IGF-1, and GH in TBI.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Xin Wu
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Yang Kong
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Peng Zou
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Yanbin Wang
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Hongtao Zhang
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Guangqiang Cui
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China
| | - Wei Zhu
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China.
| | - Hongguang Chen
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yuhuangding East Road, Zhifu District, 264000, Yantai, Shandong, China.
| |
Collapse
|
2
|
Rai A, Rajasekar G, Sahoo J, Kumari MM, Anbazhagan S. Anterior Pituitary Dysfunction After Traumatic Brain Injury: A Prospective Study. World Neurosurg 2024; 190:e588-e594. [PMID: 39094934 DOI: 10.1016/j.wneu.2024.07.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Anterior pituitary dysfunction is one of the major causes of disability and morbidity in patients suffering from traumatic brain injury (TBI). The present study was undertaken to evaluate the incidence of anterior pituitary dysfunction in cases of moderate and severe TBI, its value in long-term prognostication, and the factors that predispose to a higher incidence of anterior pituitary dysfunction in acute and chronic phases. METHODS This was a prospective cohort study wherein 216 patients with moderate and severe TBI were evaluated within 72 hours of TBI (acute phase) and at 6 months (chronic phase). RESULTS At 6 months, out of the 216 patients, 95 patients had expired and 35 patients were lost to follow-up. The remaining 86 patients were evaluated at 6 months. In the acute phase, hypopituitarism was seen in 82.4% patients, thyroid axis deficiency was seen in 57.4% patients, gonadal axis deficiency in 54.2% patients, and adrenal axis deficiency in 13.8% patients. In the chronic phase, hypopituitarism was seen in 59.3% patients, thyroid axis deficiency was seen in 24.4% patients, gonadal axis deficiency in 32.6% patients, and adrenal axis deficiency in 23.3% patients. Patients with thyroid axis deficiency at admission had significant association with a bad modified Rankin Scale score at 6 months. CONCLUSIONS Thyroid and gonadotropin axes were most commonly affected and deficiency of at least 1 axis was found in 82.4% patients in the acute phase and 59.3% in the chronic phase. Thyroid axis deficiency had a negative impact on prognosis in post-TBI patients.
Collapse
Affiliation(s)
- Ashwin Rai
- Department of Neurosurgery, Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Gopikrishnan Rajasekar
- Department of Neurosurgery, Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India.
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
| | - M Manoranjitha Kumari
- Department of Neurosurgery, Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sathiaprabhu Anbazhagan
- Department of Neurosurgery, Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
3
|
Hacioglu A, Tanriverdi F. Traumatic brain injury and prolactin. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09904-x. [PMID: 39227558 DOI: 10.1007/s11154-024-09904-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Traumatic brain injury (TBI) is a well-known etiologic factor for pituitary dysfunctions, with a prevalence of 15% during long-term follow-up. The most common hormonal disruption is growth hormone deficiency, followed by central adrenal insufficiency, central hypogonadism, and central hypothyroidism in varying order across studies. The prevalence of serum prolactin disturbances ranged widely from 0 to 85%. Prolactin release is mainly regulated by hypothalamic dopamine inhibition, and mediators such as TRH, serotonin, cytokines, and neurotransmitters have modulatory effects. Many factors, such as hypothalamic and/or pituitary gland injuries, as well as fluctuations in dopaminergic activity and other mediators and stress response, may cause derangements in serum prolactin levels after TBI. Although it is challenging to investigate the direct effects of TBI on serum prolactin levels due to many confounders, basal prolactin measurements and stimulation tests provide insight into the functionality of the hypothalamus and pituitary gland after TBI. Moreover, during the acute phase of TBI, prolactin levels appear to correlate with TBI severity. In contrast, in the chronic phase, hypoprolactinemia may function as an indirect indicator of pituitary dysfunction and reduced pituitary volume. Further investigations are needed to elucidate the pathophysiologic mechanisms underlying the prolactin trend following TBI, its significance, and its associations with other pituitary hormone dysfunctions. In this article, we re-evaluated our patients' TBI data regarding prolactin levels during prospective long-term follow-up, and reviewed the literature regarding the prevalence, pathophysiology, and clinical implications of serum prolactin disturbances during acute and chronic phases following TBI.
Collapse
Affiliation(s)
- Aysa Hacioglu
- Department of Endocrinology, Erciyes University School of Medicine, Kayseri, Türkiye
| | - Fatih Tanriverdi
- Memorial Kayseri Hospital, Endocrinology Clinic, Kayseri, Türkiye.
| |
Collapse
|
4
|
Magyar-Sumegi ZD, Stankovics L, Lendvai-Emmert D, Czigler A, Hegedus E, Csendes M, Toth L, Ungvari Z, Buki A, Toth P. Acute neuroendocrine changes after traumatic brain injury. BRAIN & SPINE 2024; 4:102830. [PMID: 38764890 PMCID: PMC11101905 DOI: 10.1016/j.bas.2024.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Introduction Post-traumatic hypopituitarism (PTHP) is a significant, but often neglected consequence of traumatic brain injury (TBI). Research question We aimed to provide a comprehensive overview of epidemiology, pathophysiology, clinical features and diagnostic approaches of PTHP. Materials and methods MEDLINE, EMBASE, Cochrane Library and Web of Science were searched. 45 articles of human studies evaluating acute endocrine changes following mild, moderate and severe TBI were selected. Results Severity of TBI seems to be the most important risk factor of PTHP. Adrenal insufficiency (AI) was present in 10% of TBI patients (prevalence can be as high as 50% after severe TBI), and hypocortisolemia is a predictor of mortality and long-term hypopituitarism. Suppression of the thyroid axis in 2-33% of TBI patients may be an independent predictor of adverse neurological outcome, as well. 9-36% of patients with severe TBI exhibit decreased function of the somatotrophic axis with a divergent effect on the central nervous system. Arginine-Vasopressin (AVP) deficiency is present in 15-51% of patients, associated with increased mortality and unfavorable outcome. Due to shear and injury of the stalk hyperprolactinemia is relatively common (2-50%), but it bears little clinical significance. Sex hormone levels remain within normal values. Discussion and conclusion PTHP occurs frequently after TBI, affecting various axis and determining patients' outcome. However, evidence is scarce regarding exact epidemiology, diagnosis, and effective clinical application of hormone substitution. Future studies are needed to identify patients at-risk, determine the optimal timing for endocrine testing, and refine diagnostic and treatment approaches to improve outcome.
Collapse
Affiliation(s)
- Zsofia Dina Magyar-Sumegi
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Department of Psychiatry and Psychotherapy, Medical School, University of Pecs, Pecs, Hungary
- Doctoral School of Clinical Neurosciences, Medical School, University of Pecs, Pecs, Hungary
| | - Levente Stankovics
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | | | - Andras Czigler
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Emoke Hegedus
- Doctoral School of Clinical Neurosciences, Medical School, University of Pecs, Pecs, Hungary
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pecs, Pecs, Hungary
| | - Mark Csendes
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Doctoral School of Clinical Neurosciences, Medical School, University of Pecs, Pecs, Hungary
| | - Luca Toth
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltan Ungvari
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andras Buki
- Department of Neurosurgery, Faculty of Medicine and Health, Orebro University, Orebro, Sweden
| | - Peter Toth
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Kesavan C, Rundle C, Mohan S. Repeated mild traumatic brain injury impairs fracture healing in male mice. BMC Res Notes 2022; 15:25. [PMID: 35093144 PMCID: PMC8801079 DOI: 10.1186/s13104-022-05906-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Objectives The goal of this study was to evaluate the long-term impact of repeated (r) mild traumatic brain injury (mTBI) on the healing of fractures in a mouse model. Ten week-old male mice were subjected to r-mTBI once per day for 4 days followed by closed femoral fracture using a three-point bending technique, 1 week post impact and fracture healing phenotype evaluated at 20 weeks of age. Results Micro-CT analysis of the fracture callus region at nine weeks post fracture revealed reduced bone volume (30%, p < 0.05) in the r-mTBI fracture group compared to the control-fracture group. The connectivity density of the fracture callus bone was reduced by 40% (p < 0.01) in the r-mTBI fracture group. Finite element analysis of the fracture callus region showed reduced failure load (p = 0.08) in the r-mTBI group compared to control group. There was no residual cartilage in the fracture callus region of either the r-mTBI or control fracture group. The reduced fracture callus bone volume and mechanical strength of fracture callus in r-mTBI mice 9 weeks post fracture are consistent with negative effects of r-mTBI on fracture healing over a long-term resulting in decreased mechanical strength of the fracture callus.
Collapse
Affiliation(s)
- Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.,Departments of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA
| | - Charles Rundle
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.,Departments of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA. .,Departments of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA. .,Orthopedic Surgery, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
6
|
Gasco V, Cambria V, Bioletto F, Ghigo E, Grottoli S. Traumatic Brain Injury as Frequent Cause of Hypopituitarism and Growth Hormone Deficiency: Epidemiology, Diagnosis, and Treatment. Front Endocrinol (Lausanne) 2021; 12:634415. [PMID: 33790864 PMCID: PMC8005917 DOI: 10.3389/fendo.2021.634415] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI)-related hypopituitarism has been recognized as a clinical entity for more than a century, with the first case being reported in 1918. However, during the 20th century hypopituitarism was considered only a rare sequela of TBI. Since 2000 several studies strongly suggest that TBI-mediated pituitary hormones deficiency may be more frequent than previously thought. Growth hormone deficiency (GHD) is the most common abnormality, followed by hypogonadism, hypothyroidism, hypocortisolism, and diabetes insipidus. The pathophysiological mechanisms underlying pituitary damage in TBI patients include a primary injury that may lead to the direct trauma of the hypothalamus or pituitary gland; on the other hand, secondary injuries are mainly related to an interplay of a complex and ongoing cascade of specific molecular/biochemical events. The available data describe the importance of GHD after TBI and its influence in promoting neurocognitive and behavioral deficits. The poor outcomes that are seen with long standing GHD in post TBI patients could be improved by GH treatment, but to date literature data on the possible beneficial effects of GH replacement therapy in post-TBI GHD patients are currently scarce and fragmented. More studies are needed to further characterize this clinical syndrome with the purpose of establishing appropriate standards of care. The purpose of this review is to summarize the current state of knowledge about post-traumatic GH deficiency.
Collapse
|
7
|
Rowe RK, Ortiz JB, Thomas TC. Mild and Moderate Traumatic Brain Injury and Repeated Stress Affect Corticosterone in the Rat. Neurotrauma Rep 2020; 1:113-124. [PMID: 34223536 PMCID: PMC8240883 DOI: 10.1089/neur.2020.0019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) survivors suffer from a range of morbidities, including post-traumatic endocrinopathies that can cause physical and mental changes in patients, greatly compromising quality of life. This study tested the hypothesis that mild and moderate diffuse TBI leads to chronic deficiencies in corticosterone (CORT) regulation following repeated exposure to restraint stress over time. Young adult male rats (n = 9–11/group) were subjected to mild or moderate TBI induced by midline fluid percussion injury (mFPI) or control sham surgery. At 6 and 24 h post-injury, both mild and moderate TBI resulted in elevated resting plasma CORT levels compared with uninjured shams. Independent of TBI severity, all rats had lower resting plasma CORT levels at 7, 14, 28, and 54 days post-injury compared with pre-surgery baseline CORT. Circulating levels of CORT were also evaluated under restraint stress and in response to dexamethasone (DEX), a synthetic glucocorticoid. Independent of TBI severity, restraint stress elevated CORT at 30, 60, and 90 min post-stressor initiation at all post-injury time-points. A blunted CORT response to restraint stress was observed with lower CORT levels after restraint at 28 and 54 days compared with 7 days post-injury (DPI), indicative of habituation to the stressor. A high dose of DEX lowered CORT levels at 90 min post-restraint stress initiation compared with low-dose DEX, independent of TBI severity. These results support TBI-induced CORT dysregulation at acute time-points, but additional studies that investigate the onset and progression of endocrinopathies, controlling for habituation to repeated restraint stress, are needed to inform the diagnosis and treatment of such morbidities in TBI survivors.
Collapse
Affiliation(s)
- Rachel K Rowe
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Department of Child Health, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, USA.,Phoenix Veteran Affairs Health Care System, Phoenix, Arizona, USA
| | - J Bryce Ortiz
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Department of Child Health, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, USA
| | - Theresa Currier Thomas
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Department of Child Health, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, USA.,Phoenix Veteran Affairs Health Care System, Phoenix, Arizona, USA
| |
Collapse
|
8
|
Bensalah M, Donaldson M, Labassen M, Cherfi L, Nebbal M, Haffaf EM, Abdennebi B, Guenane K, Kemali Z, Ould Kablia S. Prevalence of hypopituitarism and quality of life in survivors of post-traumatic brain injury. Endocrinol Diabetes Metab 2020; 3:e00146. [PMID: 32704567 PMCID: PMC7375098 DOI: 10.1002/edm2.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hypopituitarism is a recognized sequela of traumatic brain injury (TBI) and may worsen the quality of life (QoL) in survivors. AIMS To assess the prevalence of post-traumatic hypopituitarism (PTHP) and growth hormone deficiency (GHD), and determine their correlation with QoL. METHODS Survivors of moderate to severe TBI were recruited from two Algerian centres. At 3 and 12 months, pituitary function was evaluated using insulin tolerance test (ITT), QoL by growth hormone deficiency in adults' questionnaire (QoL-AGHDA), and 36-item short-form (SF-36) health survey. RESULTS Of 133 (M: 128; F: 5) patients aged 18-65 years, PTHP and GHD were present at 3 and 12 months in 59 (44.4%) and 23 (17.29%), 41/116 (35.3%) and 18 (15.5%). Thirteen patients with GHD at 3 months tested normally at 12 months, while 9 had become GHD at 12 months. At 3 and 12 months, peak cortisol was < 500 nmol/L) in 39 (29.3%) and 29 (25%) patients, but <300 nmol/L in only five and seven. Prevalence for gonadotrophin deficiency was 6.8/8.6%, hypo- and hyperprolactinaemia 6.8/3.8% and 5.2/8.6%, and thyrotrophin deficiency 1.5/0.9%. Mean scores for QoL-AGHDA were higher in patients with PTHP at 3 and 12 months: 7.07 vs 3.62 (P = .001) and in patients with GHD at 12 months: 8.72 vs 4.09 (P = .015). Mean SF-36 scores were significantly lower for PTHP at 3 months. CONCLUSION Prevalence of PTHP and GHD changes with time. AGHDA measures QoL in GHD more specifically than SF-36. Full pituitary evaluation and QoL-AGHDA 12 months after TBI are recommended.
Collapse
Affiliation(s)
| | | | - Malek Labassen
- Endocrinology UnitCentral Hospital of ArmyAlgiersAlgeria
| | - Lyes Cherfi
- Critical Care UnitCentral Hospital of ArmyAlgiersAlgeria
| | | | | | | | - Kamel Guenane
- Critical care UnitSalim Zemirli HospitalAlgiersAlgeria
| | - Zahra Kemali
- Endocrinology UnitCentral Hospital of ArmyAlgiersAlgeria
| | | |
Collapse
|
9
|
Hacioglu A, Kelestimur F, Tanriverdi F. Long-term neuroendocrine consequences of traumatic brain injury and strategies for management. Expert Rev Endocrinol Metab 2020; 15:123-139. [PMID: 32133881 DOI: 10.1080/17446651.2020.1733411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Introduction: Traumatic brain injuries (TBI) are reported to cause neuroendocrine impairment with a prevalence of 15% with confirmatory testing. Pituitary dysfunction (PD) may have detrimental effects on vital parameters as well as on body composition, cardiovascular functions, cognition, and quality of life. Therefore, much effort has been made to identify predictive factors for post-TBI PD and various screening strategies have been offered.Areas covered: We searched PubMed and reviewed the recent data on clinical perspectives and long-term outcomes as well as predictive factors and screening modalities of post-TBI PD. Inconsistencies in the literature are overviewed and new areas of research are discussed.Expert opinion: Studies investigating biomarkers that will accurately predict TBI patients with a high risk of PD are generally pilot studies with a small number of participants. Anti-pituitary and anti-hypothalamic antibodies, neural proteins, micro-RNAs are promising in this field. As severity of TBI has been the most commonly associated risk factor for post-TBI PD, we suggest prospective screening based on severity of head trauma until new evidence emerges. There is also a need for more studies investigating the clinical effects of hormone replacement in TBI patients with PD.
Collapse
Affiliation(s)
- Aysa Hacioglu
- Department of Endocrinology and Metabolism, Erciyes University Medical School, Kayseri, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology and Metabolism, Yeditepe University Medical Faculty, Istanbul, Turkey
| | - Fatih Tanriverdi
- Department of Endocrinology and Metabolism, Memorial Kayseri Hospital, Kayseri, Turkey
| |
Collapse
|
10
|
Kesavan C, Bajwa NM, Watt H, Mohan S. Growth Hormone Effects on Bone Loss-Induced by Mild Traumatic Brain Injury and/or Hind Limb Unloading. Sci Rep 2019; 9:18995. [PMID: 31831786 PMCID: PMC6908685 DOI: 10.1038/s41598-019-55258-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/12/2019] [Indexed: 01/06/2023] Open
Abstract
Growth hormone (GH) deficiency and loss of physical activity are common features in traumatic brain injury (TBI) patients that may contribute to bone loss. Therefore, we tested the hypothesis that GH treatment will rescue the hind limb unloading (UL)-induced skeletal deficit in TBI mice. Mild TBI was induced once per day for four consecutive days. UL (right hind limb) and treatment (3 mg/day GH or vehicle) began two weeks after the first TBI episode and lasted for four weeks. GH treatment increased femur BMD and lean body mass but decreased the % fat measured by DXA in the Control group. Micro-CT analysis revealed that the TBI, UL and TBI-UL groups showed reduced tibia trabecular (Tb) bone mass by 15%, 70%, and 75%, respectively compared to Control mice and that GH treatment significantly increased Tb. bone mass in all four groups. Vertebra also showed reduced Tb. bone mass in TBI, UL and TBI-UL groups. GH treatment increased vertebral Tb. bone mass in Control and UL groups but not in the TBI or TBI-UL group. GH treatment increased serum IGF-I levels similarly in TBI, UL and TBI-UL groups at day 14, suggesting the GH effect on liver IGF-I production was unaffected by skeletal UL. In contrast, GH effect on expression of ALP, IGFBP5 and axin2 in bone were compromised by UL. In conclusion, skeletal UL caused a greater Tb. bone deficit than mild TBI alone and that GH anabolic effects in the TBI and UL groups vary depending on the skeletal site.
Collapse
Affiliation(s)
- Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA.,Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Nikita M Bajwa
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
| | - Heather Watt
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA. .,Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA. .,Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA. .,Department of Orthopedics, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
| |
Collapse
|
11
|
Emelifeonwu JA, Flower H, Loan JJ, McGivern K, Andrews PJD. Prevalence of Anterior Pituitary Dysfunction Twelve Months or More following Traumatic Brain Injury in Adults: A Systematic Review and Meta-Analysis. J Neurotrauma 2019; 37:217-226. [PMID: 31111791 DOI: 10.1089/neu.2018.6349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The objective of this study is to systematically review clinical studies that have reported on the prevalence of chronic post-traumatic brain injury anterior pituitary dysfunction (PTPD) 12 months or more following traumatic brain injury (TBI). We searched Medline, Embase, and PubMed up to April 2017 and consulted bibliographies of narrative reviews. We included cohort, case-control, and cross-sectional studies enrolling at least five adults with primary TBI in whom at least one anterior pituitary axis was assessed at least 12 months following TBI. We excluded studies in which other brain injuries were indistinguishable from TBI. Study quality was assessed using the Newcastle-Ottawa Scale (NOS) score. We also considered studies that determined growth hormone deficiency and adrenocorticotrophic hormone reserve using provocation test to be at low risk of bias. Data were extracted by four independent reviewers and assessed for risk of bias using a data extraction form. We performed meta-analyses using random effect models and assessed heterogeneity using the I2 index. We identified 58 publications, of which 29 (2756 participants) were selected for meta-analysis. Twelve of these were deemed to be at low risk of bias and therefore "high-quality," as they had NOS scores greater than 8 and had used provocation tests. The overall prevalence of at least one anterior pituitary hormone dysfunction for all 29 studies was 32% (95% confidence interval [CI] 25-38%). The overall prevalence in the 12 high-quality studies was 34% (95% CI 27-42%). We observed significant heterogeneity that was not solely explained by the risk of bias. Studies with a higher proportion of participants with mild TBI had a lower prevalence of PTPD. Our results show that approximately one-third of TBI sufferers have persistent anterior pituitary dysfunction 12 months or more following trauma. Future research on PTPD should differentiate between mild and moderate/severe TBI.
Collapse
Affiliation(s)
- John A Emelifeonwu
- Department of Neurosurgery, University of Edinburgh and NHS Lothian Western General Hospital, Edinburgh, United Kingdom.,Center for Clinical Brain Sciences, University of Edinburgh and NHS Lothian Western General Hospital, Edinburgh, United Kingdom
| | - Hannah Flower
- School of Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jamie J Loan
- Department of Neurosurgery, NHS Lothian Western General Hospital, Edinburgh, United Kingdom
| | - Kieran McGivern
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Peter J D Andrews
- Center for Clinical Brain Sciences, University of Edinburgh and NHS Lothian Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Ntali G, Tsagarakis S. Traumatic brain injury induced neuroendocrine changes: acute hormonal changes of anterior pituitary function. Pituitary 2019; 22:283-295. [PMID: 30746590 DOI: 10.1007/s11102-019-00944-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE It is estimated that approximately 69 million individuals worldwide will sustain a TBI each year, which accounts for substantial morbidity and mortality in both children and adults. TBI may lead to significant neuroendocrine changes, if the delicate pituitary is ruptured. In this review, we focus on the anterior pituitary hormonal changes in the acute post-TBI period and we present the evidence supporting the need for screening of anterior pituitary function in the early post-TBI time along with current suggestions regarding the endocrine assessment and management of these patients. METHODS Original systematic articles with prospective and/or retrospective design studies of acute TBI were included, as were review articles and case series. RESULTS Although TBI may motivate an acute increase of stress hormones, it may also generate a wide spectrum of anterior pituitary hormonal deficiencies. The frequency of post-traumatic anterior hypopituitarism (PTHP) varies according to the severity, the type of trauma, the time elapsed since injury, the study population, and the methodology used to diagnose pituitary hormone deficiency. Early neuroendocrine abnormalities may be transient, but additional late ones may also appear during the course of rehabilitation. CONCLUSIONS Acute hypocortisolism should be diagnosed and managed promptly, as it can be life-threatening, but currently there is no evidence to support treatment of acute GH, thyroid hormones or gonadotropins deficiencies. However, a more comprehensive assessment of anterior pituitary function should be undertaken both in the early and in the post-acute phase, since ongoing hormone deficiencies may adversely affect the recovery and quality of life of these patients.
Collapse
Affiliation(s)
- Georgia Ntali
- Department of Endocrinology and Diabetes, Evangelismos Hospital, Athens, Greece
| | - Stylianos Tsagarakis
- Department of Endocrinology and Diabetes, Evangelismos Hospital, Athens, Greece.
| |
Collapse
|
13
|
Temizkan S, Kelestimur F. A clinical and pathophysiological approach to traumatic brain injury-induced pituitary dysfunction. Pituitary 2019; 22:220-228. [PMID: 30734143 DOI: 10.1007/s11102-019-00941-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE This review aimed to evaluate the data underlying the pathophysiology of TBI-induced hypothalamo-pituitary dysfunction. METHODS Recent literature about the pathophysiology of TBI-induced hypothalamo-pituitary dysfunction reviewed. RESULTS Traumatic brain injury (TBI) is a worldwide epidemic that frequently leads to death; TBI survivors tend to sustain cognitive, behavioral, psychological, social, and physical disabilities in the long term. The most common causes of TBI include road accidents, falls, assaults, sports, work and war injuries. From an endocrinological perspective, TBIs are important, because they can cause pituitary dysfunction. Although TBI-induced pituitary dysfunction was first reported a century ago, most of the studies that evaluate this disorder were published after 2000. TBI due to sports and blast injury-related pituitary dysfunction is generally underreported, due to limited recognition of the cases. CONCLUSION The underlying pathophysiology responsible for post-TBI pituitary dysfunction is not clear. The main proposed mechanisms are vascular injury, direct traumatic injury to the pituitary gland, genetic susceptibility, autoimmunity, and transient medication effects.
Collapse
Affiliation(s)
- Sule Temizkan
- Department of Endocrinology, Yeditepe University, Faculty of Medicine, Kosuyolu Hospital, 34718, Istanbul, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Yeditepe University, Faculty of Medicine, Kosuyolu Hospital, 34718, Istanbul, Turkey.
| |
Collapse
|
14
|
Fama' F, Vita R, Sindoni A, Vinci SL, Giorgianni G, Grasso L, Gioffre'-Florio M, Benvenga S. High frequency of empty sella, with gender differences, in the early neuroradiology evaluation of patients with traumatic brain injury. A prospective study. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2018; 15:54-61. [PMID: 30622899 PMCID: PMC6317284 DOI: 10.1016/j.jcte.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/11/2018] [Accepted: 12/29/2018] [Indexed: 01/04/2023]
Abstract
One-hundred four persons aged ≥ 18 years (62 males and 42 females) who were admitted for traumatic brain injury (TBI) underwent brain computed tomography (CT) scan and assay of serum cortisol, insulin-like growth factor 1 (IGF-1), thyrotropin (TSH) and free thyroxine (FT4). The main purpose was to assess any gender difference and the rate of empty sella (ES). Women were more likely to have empty sella (19/42 [45.2%] vs 19/62 [30.6%], P = 0.15, OR = 1.9), which was more frequently total ES or TES (16/19 [84.2%] vs 3/19 [15.8%], P = 0.0025, OR = 11.6). Neuroradiology was normal in the remaining 65 patients. Patients with TES were approximately 20–30 years older than both patients with partial ES (PES) and normal sella, but only the comparison with normal sella was significant (P = 0.001 all patients, P = 0.005 males). Presumed deficiency of IGF-1, cortisol or TSH occurred in 33 persons (31.7%; 20 Males [32.2%], 13 Females [30.9%]), 14 (13.5%; 10 M [16.2%], 4F [9.5%]) or 8 (7.7%; 1 M [1.7%], 7F [16.7%]), with only TSH deficiency having significant intergender difference (P = 0.007). The highest or lowest rates of IGF-1 deficiency occurred in men with PES (41.7%) or men with TES (14.3%), of cortisol deficiency in men with PES (33.3%) or women with PES (zero), and TSH deficiency in women with TES (18.7%) or both men and women with PES (zero) and men with normal sella (zero). Within ES, males with no deficiency were older compared to males with at least one hormone deficiency (75.7 ± 17.4 vs 55.6 ± 18.9, P = 0.022); in turn, the former males were also older compared with normal sella males having no hormone deficiency (54.1 ± 25.2, P = 0.023). In conclusion, ES is detectable in almost 40% of persons who undergo CT within 24 h from TBI. A number of intergender differences concerning ES and the hormones evaluated are apparent.
Collapse
Affiliation(s)
- Fausto Fama'
- Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Italy
| | - Roberto Vita
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Alessandro Sindoni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Sergio Lucio Vinci
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Italy
| | - Grazia Giorgianni
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Italy
| | - Loredana Grasso
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Italy
| | - Maria Gioffre'-Florio
- Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Italy.,Interdepartmental Program on Molecular & Clinical Endocrinology, and Women's Endocrine Health, University Hospital of Messina, 98125 Messina, Italy
| |
Collapse
|
15
|
Bajwa NM, Kesavan C, Mohan S. Long-term Consequences of Traumatic Brain Injury in Bone Metabolism. Front Neurol 2018; 9:115. [PMID: 29556212 PMCID: PMC5845384 DOI: 10.3389/fneur.2018.00115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/15/2018] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) leads to long-term cognitive, behavioral, affective deficits, and increase neurodegenerative diseases. It is only in recent years that there is growing awareness that TBI even in its milder form poses long-term health consequences to not only the brain but to other organ systems. Also, the concept that hormonal signals and neural circuits that originate in the hypothalamus play key roles in regulating skeletal system is gaining recognition based on recent mouse genetic studies. Accordingly, many TBI patients have also presented with hormonal dysfunction, increased skeletal fragility, and increased risk of skeletal diseases. Research from animal models suggests that TBI may exacerbate the activation and inactivation of molecular pathways leading to changes in both osteogenesis and bone destruction. TBI has also been found to induce the formation of heterotopic ossification and increased callus formation at sites of muscle or fracture injury through increased vascularization and activation of systemic factors. Recent studies also suggest that the disruption of endocrine factors and neuropeptides caused by TBI may induce adverse skeletal effects. This review will discuss the long-term consequences of TBI on the skeletal system and TBI-induced signaling pathways that contribute to the formation of ectopic bone, altered fracture healing, and reduced bone mass.
Collapse
Affiliation(s)
- Nikita M Bajwa
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States.,Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States.,Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
16
|
Hohl A, Zanela FA, Ghisi G, Ronsoni MF, Diaz AP, Schwarzbold ML, Dafre AL, Reddi B, Lin K, Pizzol FD, Walz R. Luteinizing Hormone and Testosterone Levels during Acute Phase of Severe Traumatic Brain Injury: Prognostic Implications for Adult Male Patients. Front Endocrinol (Lausanne) 2018; 9:29. [PMID: 29487565 PMCID: PMC5816813 DOI: 10.3389/fendo.2018.00029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/22/2018] [Indexed: 12/28/2022] Open
Abstract
Traumatic brain injury (TBI) is a worldwide core public health problem affecting mostly young male subjects. An alarming increase in incidence has turned TBI into a leading cause of morbidity and mortality in young adults as well as a tremendous resource burden on the health and welfare sector. Hormone dysfunction is highly prevalent during the acute phase of severe TBI. In particular, investigation of the luteinizing hormone (LH) and testosterone levels during the acute phase of severe TBI in male has identified a high incidence of low testosterone levels in male patients (36.5-100%) but the prognostic significance of which remains controversial. Two independent studies showed that normal or elevated levels of LH levels earlier during hospitalization are significantly associated with higher mortality/morbidity. The association between LH levels and prognosis was independent of other predictive variables such as neuroimaging, admission Glasgow coma scale, and pupillary reaction. The possible mechanisms underlying this association and further research directions in this field are discussed. Overall, current data suggest that LH levels during the acute phase of TBI might contribute to accurate prognostication and further prospective multicentric studies are required to develop more sophisticated predictive models incorporating biomarkers such as LH in the quest for accurate outcome prediction following TBI. Moreover, the potential therapeutic benefits of modulating LH during the acute phase of TBI warrant investigation.
Collapse
Affiliation(s)
- Alexandre Hohl
- Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- Serviço de Endocrinologia e Metabologia, Departamento de Clínica Médica, Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Fernando Areas Zanela
- Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Gabriela Ghisi
- Serviço de Endocrinologia e Metabologia, Departamento de Clínica Médica, Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Marcelo Fernando Ronsoni
- Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- Serviço de Endocrinologia e Metabologia, Departamento de Clínica Médica, Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Alexandre Paim Diaz
- Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- Serviço de Psiquiatria, Departamento de Clínica Médica, Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Marcelo Liborio Schwarzbold
- Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- Serviço de Psiquiatria, Departamento de Clínica Médica, Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Alcir Luiz Dafre
- Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- Departamento de Bioquímica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Benjamin Reddi
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Kátia Lin
- Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- Serviço de Neurologia, Departamento de Clínica Médica, Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Felipe Dal Pizzol
- Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Roger Walz
- Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- Serviço de Neurologia, Departamento de Clínica Médica, Hospital Universitário (HU), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- *Correspondence: Roger Walz,
| |
Collapse
|
17
|
Experimental repetitive mild traumatic brain injury induces deficits in trabecular bone microarchitecture and strength in mice. Bone Res 2017; 5:17042. [PMID: 29263937 PMCID: PMC5735530 DOI: 10.1038/boneres.2017.42] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 07/04/2017] [Indexed: 01/21/2023] Open
Abstract
To evaluate the long-term consequence of repetitive mild traumatic brain injury (mTBI) on bone, mTBI was induced in 10-week-old female C57BL/6J mice using a weight drop model, once per day for 4 consecutive days at different drop heights (0.5, 1 and 1.5 m) and the skeletal phenotype was evaluated at different time points after the impact. In vivo micro-CT (μ-CT) analysis of the tibial metaphysis at 2, 8 and 12 weeks after the impact revealed a 5%-32% reduction in trabecular bone mass. Histomorphometric analyses showed a reduced bone formation rate in the secondary spongiosa of 1.5 m impacted mice at 12 weeks post impact. Apparent modulus (bone strength), was reduced by 30% (P<0.05) at the proximal tibial metaphysis in the 1.5 m drop height group at 2 and 8 weeks post impact. Ex vivo μ-CT analysis of the fifth lumbar vertebra revealed a significant reduction in trabecular bone mass at 12 weeks of age in all three drop height groups. Serum levels of osteocalcin were decreased by 22%, 15%, and 19% in the 0.5, 1.0 and 1.5 m drop height groups, respectively, at 2 weeks post impact. Serum IGF-I levels were reduced by 18%-32% in mTBI mice compared to contro1 mice at 2 weeks post impact. Serum osteocalcin and IGF-I levels correlated with trabecular BV/TV (r2 =0.14 and 0.16, P<0.05). In conclusion, repetitive mTBI exerts significant negative effects on the trabecular bone microarchitecture and bone mechanical properties by influencing osteoblast function via reduced endocrine IGF-I actions.
Collapse
|