1
|
Law AD, Cassar M, Long DM, Chow ES, Giebultowicz JM, Venkataramanan A, Strauss R, Kretzschmar D. FTD-associated mutations in Tau result in a combination of dominant and recessive phenotypes. Neurobiol Dis 2022; 170:105770. [PMID: 35588988 PMCID: PMC9261467 DOI: 10.1016/j.nbd.2022.105770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Although mutations in the microtubules-associated protein Tau have long been connected with several neurodegenerative diseases, the underlying molecular mechanisms causing these tauopathies are still not fully understood. Studies in various models suggested that dominant gain-of-function effects underlie the pathogenicity of these mutants; however, there is also evidence that the loss of normal physiological functions of Tau plays a role in tauopathies. Previous studies on Tau in Drosophila involved expressing the human Tau protein in the background of the endogenous Tau gene in addition to inducing high expression levels. To study Tau pathology in more physiological conditions, we recently created Drosophila knock-in models that express either wildtype human Tau (hTauWT) or disease-associated mutant hTau (hTauV337M and hTauK369I) in place of the endogenous Drosophila Tau (dTau). Analyzing these flies as homozygotes, we could therefore detect recessive effects of the mutations while identifying dominant effects in heterozygotes. Using memory, locomotion and sleep assays, we found that homozygous mutant hTau flies showed deficits already when quite young whereas in heterozygous flies, disease phenotypes developed with aging. Homozygotes also revealed an increase in microtubule diameter, suggesting that changes in the cytoskeleton underlie the axonal degeneration we observed in these flies. In contrast, heterozygous mutant hTau flies showed abnormal axonal targeting and no detectable changes in microtubules. However, we previously showed that heterozygosity for hTauV337M interfered with synaptic homeostasis in central pacemaker neurons and we now show that heterozygous hTauK369I flies have decreased levels of proteins involved in the release of synaptic vesicles. Taken together, our results demonstrate that both mutations induce a combination of dominant and recessive disease-related phenotypes that provide behavioral and molecular insights into the etiology of Tauopathies.
Collapse
Affiliation(s)
- Alexander D Law
- Oregon Institute of Occupational Health Sciences, 3181 S.W. Sam Jackson Park Road, Portland, OR 97219, USA
| | - Marlène Cassar
- Oregon Institute of Occupational Health Sciences, 3181 S.W. Sam Jackson Park Road, Portland, OR 97219, USA
| | - Dani M Long
- Oregon Institute of Occupational Health Sciences, 3181 S.W. Sam Jackson Park Road, Portland, OR 97219, USA
| | - Eileen S Chow
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | | | - Anjana Venkataramanan
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch Weg 15, 55128 Mainz, Germany
| | - Roland Strauss
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch Weg 15, 55128 Mainz, Germany
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, 3181 S.W. Sam Jackson Park Road, Portland, OR 97219, USA.
| |
Collapse
|
2
|
Ygland E, van Westen D, Englund E, Rademakers R, Wszolek ZK, Nilsson K, Nilsson C, Landqvist Waldö M, Alafuzoff I, Hansson O, Gustafson L, Puschmann A. Slowly progressive dementia caused by MAPT R406W mutations: longitudinal report on a new kindred and systematic review. ALZHEIMERS RESEARCH & THERAPY 2018; 10:2. [PMID: 29370822 PMCID: PMC6389050 DOI: 10.1186/s13195-017-0330-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
Abstract
Background The MAPT c.1216C > T (p.Arg406Trp; R406W) mutation is a known cause of frontotemporal dementia with Parkinsonism linked to chromosome 17 tau with Alzheimer’s disease-like clinical features. Methods We compiled clinical data from a new Swedish kindred with R406W mutation. Seven family members were followed longitudinally for up to 22 years. Radiological examinations were performed in six family members and neuropathological examinations in three. We systematically reviewed the literature and compiled clinical, radiological, and neuropathological data on 63 previously described R406W heterozygotes and 3 homozygotes. Results For all cases combined, the median age of onset was 56 years and the median disease duration was 13 years. Memory impairment was the most frequent symptom, behavioral disturbance and language impairment were less common, and Parkinsonism was rare. Disease progression was most often slow. The most frequent clinical diagnosis was Alzheimer’s disease. R406W homozygotes had an earlier age at onset and a higher frequency of behavioral symptoms and Parkinsonism than heterozygotes. In the new Swedish kindred, a consistent imaging finding was ventromedial temporal lobe atrophy, which was evident also in early disease stages as a widening of the collateral sulcus with ensuing atrophy of the parahippocampal gyrus. Unlike previously published R406W carriers, all three autopsied patients from the novel family showed neuropathological similarities with progressive supranuclear palsy, with predominant four-repeat (exon 10+) tau isoform (4R) tauopathy and neurofibrillary tangles accentuated in the basal-medial temporal lobe. Amyloid-β pathology was absent. Conclusions Dominance of 4R over three-repeat (exon 10−) tau isoforms contrasts with earlier reports of R406W patients and was not sufficiently explained by the presence of H1/H2 haplotypes in two of the autopsied patients. R406W patients often show a long course of disease with marked memory deficits. Both our neuropathological results and our imaging findings revealed that the ventromedial temporal lobes were extensively affected in the disease. We suggest that this area may represent the point of origin of tau deposition in this disease with relatively isolated tauopathy. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0330-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emil Ygland
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Getingevägen 4, 221 85, Lund, Sweden
| | - Danielle van Westen
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Diagnostic Radiology, Getingevägen 4, 221 85, Lund, Sweden
| | - Elisabet Englund
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Oncology and Pathology, Sölvegatan 23, 221 85, Lund, Sweden
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Karin Nilsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Getingevägen 4, 221 85, Lund, Sweden
| | - Christer Nilsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Getingevägen 4, 221 85, Lund, Sweden
| | - Maria Landqvist Waldö
- Lund University, Skåne University Hospital/Ängelholm Hospital, Department of Clinical Sciences Lund, Memory Clinic, Västersjögatan 10, 262 82, Ängelholm, Sweden
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Clinical and Experimental Pathology, Uppsala University, Rudbecklaboratoriet, 75185, Uppsala, Sweden
| | - Oskar Hansson
- Lund University, Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund, Sweden.,Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden
| | - Lars Gustafson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Getingevägen 4, 221 85, Lund, Sweden
| | - Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Getingevägen 4, 221 85, Lund, Sweden.
| |
Collapse
|