1
|
Qi Q, Su D, Zhuang S, Yao S, Heindl LM, Fan X, Lin M, Li J, Pang Y. Progress in Nanotechnology for Treating Ocular Surface Chemical Injuries: Reflecting on Advances in Ophthalmology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407340. [PMID: 39755928 PMCID: PMC11809354 DOI: 10.1002/advs.202407340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques. In recent years, nanotechnology has made significant strides, revolutionizing the management of ocular surface chemical injuries by enabling sustained drug release, enhancing treatment efficacy, and minimizing side effects. This review provides a comprehensive analysis of the etiology, epidemiology, classification, and conventional therapies for ocular chemical burns, with a special focus on nanotechnology-based drug delivery systems in managing ocular surface chemical injuries. Twelve categories of nanocarrier platforms are examined, including liposomes, nanoemulsions, nanomicelles, nanowafers, nanostructured lipid carriers, nanoparticles, hydrogels, dendrimers, nanocomplexes, nanofibers, nanozymes, and nanocomposite materials, highlighting their advantages in targeted delivery, biocompatibility, and improved healing efficacy. Additionally, current challenges and limitations in the field are discussed and the future potential of nanotechnology in treating ocular diseases is explored. This review presents the most extensive examination of this topic to date, aiming to link recent advancements with broader therapeutic strategies.
Collapse
Affiliation(s)
- Qiaoran Qi
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Dai Su
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Shuqin Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Sunyuan Yao
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Ludwig M. Heindl
- Department of OphthalmologyFaculty of Medicine and University Hospital CologneUniversity of Cologne50937CologneGermany
- Center for Integrated Oncology (CIO)Aachen‐Bonn‐Cologne‐DuesseldorfCologneGermany
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Ming Lin
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Jin Li
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Yan Pang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
- Shanghai Frontiers Science Center of Drug Target Identification and DeliverySchool of Pharmaceutical SciencesShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
2
|
Teng L, Sun Y, Teng S, Hui P. Applications of nanomaterials in anti-VEGF treatment for ophthalmic diseases. J Biomed Mater Res A 2024; 112:296-306. [PMID: 37850566 DOI: 10.1002/jbm.a.37626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/05/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Angiogenesis has been determined to be essential in the occurrence and metastasis of diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion (RVO), choroidal neovascularization (CNV), retinopathy of prematurity (ROP), tumor, etc. However, the clinical use of anti-vascular endothelial growth factors (VEGF) drugs is currently limited due to its high cost, potential side effects, and need for repeated injections. In recent years, nanotechnology has shown promising results in inhibiting neovascularization and reducing reactive oxygen species (ROS) or inflammatory factors. Some nanomaterials can also act as vehicles for drug delivery, such as lipid nanoparticles and PLGA. The process of angiogenesis and its molecular mechanism are discussed in this article. At the same time, this study aims to systematically review the research progress of nanotechnology and offer more treatment options for neovascularization-related diseases in clinical ophthalmology.
Collapse
Affiliation(s)
- Lu Teng
- The First Bethune Hospital of Jilin University, Jilin, China
| | - Yabin Sun
- The First Bethune Hospital of Jilin University, Jilin, China
| | - Siying Teng
- The First Bethune Hospital of Jilin University, Jilin, China
| | - Peng Hui
- The First Bethune Hospital of Jilin University, Jilin, China
| |
Collapse
|
3
|
Yang C, Nguyen DD, Lai J. Poly(l-Histidine)-Mediated On-Demand Therapeutic Delivery of Roughened Ceria Nanocages for Treatment of Chemical Eye Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302174. [PMID: 37430140 PMCID: PMC10502830 DOI: 10.1002/advs.202302174] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/10/2023] [Indexed: 07/12/2023]
Abstract
Development of topical bioactive formulations capable of overcoming the low bioavailability of conventional eye drops is critically important for efficient management of ocular chemical burns. Herein, a nanomedicine strategy is presented to harness the surface roughness-controlled ceria nanocages (SRCNs) and poly(l-histidine) surface coatings for triggering multiple bioactive roles of intrinsically therapeutic nanocarriers and promoting transport across corneal epithelial barriers as well as achieving on-demand release of dual drugs [acetylcholine chloride (ACh) and SB431542] at the lesion site. Specifically, the high surface roughness helps improve cellular uptake and therapeutic activity of SRCNs while exerting a negligible impact on good ocular biocompatibility of the nanomaterials. Moreover, the high poly(l-histidine) coating amount can endow the SRCNs with an ≈24-fold enhancement in corneal penetration and an effective smart release of ACh and SB431542 in response to endogenous pH changes caused by tissue injury/inflammation. In a rat model of alkali burn, topical single-dose nanoformulation can efficaciously reduce corneal wound areas (19-fold improvement as compared to a marketed eye drops), attenuate ≈93% abnormal blood vessels, and restore corneal transparency to almost normal at 4 days post-administration, suggesting great promise for designing multifunctional metallic nanotherapeutics for ocular pharmacology and tissue regenerative medicine.
Collapse
Affiliation(s)
- Chia‐Jung Yang
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Duc Dung Nguyen
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Jui‐Yang Lai
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
- Department of OphthalmologyChang Gung Memorial Hospital, LinkouTaoyuan33305Taiwan
- Department of Materials EngineeringMing Chi University of TechnologyNew Taipei City24301Taiwan
- Research Center for Chinese Herbal MedicineCollege of Human EcologyChang Gung University of Science and TechnologyTaoyuan33303Taiwan
| |
Collapse
|
4
|
Shi J, Yang J, Xu H, Luo Q, Sun J, Zhang Y, Liang Z, Zhao N, Zhang J. Preparation of a Sunitinib loaded microemulsion for ocular delivery and evaluation for the treatment of corneal neovascularization in vitro and in vivo. Front Pharmacol 2023; 14:1157084. [PMID: 37497104 PMCID: PMC10366539 DOI: 10.3389/fphar.2023.1157084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Corneal neovascularization (CNV) is a pathological condition that can disrupt corneal transparency, thus harming visual acuity. However, there is no effective drug to treat CNV. Sunitinib (STB), a small-molecule multiple receptor tyrosine kinase inhibitor, was shown to have an effect on CNV. The purpose of this study was to develop an STB microemulsion (STB-ME) eye drop to inhibit CNV by topical application. Methods: We successfully prepared an STB-ME by the phase inversion emulsification method, and the physicochemical properties of STB-MEs were investigated. The short-term storage stability, cytotoxicity to human corneal epithelial cells, drug release, ocular irritation, ocular pharmacokinetics and the inhibitory effect on CNV were evaluated in vitro and in vivo. Results: The optimal formulation of STB-ME is composed of oleic acid, CRH 40, Transcutol P, water and sodium hyaluronate (SH). It is a uniform spherical particle with a mean droplet size of 18.74 ± 0.09 nm and a polydispersity index of 0.196 ± 0.004. In the in vitro drug release results, STB-ME showed sustained release and was best fitted by a Korsmeyer-Peppas model (R 2 = 0.9960). The results of the ocular pharmacokinetics in rabbits showed that the formulation containing SH increased the bioavailability in the cornea (2.47-fold) and conjunctiva (2.14-fold). STB-ME (0.05% and 0.1%), administered topically, suppressed alkali burn-induced CNV in mice more effectively than saline, and high-dose (0.1%) STB-ME had similar efficacy to dexamethasone (0.025%). Conclusion: This study provides a promising formulation of STB-ME for the inhibition of CNV by topical administration, which has the excellent characteristics of effectiveness, sustained release and high ocular bioavailability.
Collapse
Affiliation(s)
- Jieran Shi
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qing Luo
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jun Sun
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yali Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Zhang C, Yin Y, Zhao J, Li Y, Wang Y, Zhang Z, Niu L, Zheng Y. An Update on Novel Ocular Nanosystems with Possible Benefits in the Treatment of Corneal Neovascularization. Int J Nanomedicine 2022; 17:4911-4931. [PMID: 36267540 PMCID: PMC9578304 DOI: 10.2147/ijn.s375570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Corneal neovascularization (CNV) is an ocular pathological change that results from an imbalance between angiogenic factors and antiangiogenic factors as a result of various ocular insults, including infection, inflammation, hypoxia, trauma, corneal degeneration, and corneal transplantation. Current clinical strategies for the treatment of CNV include pharmacological treatment and surgical intervention. Despite some degree of success, the current treatment strategies are restricted by limited efficacy, adverse effects, and a short duration of action. Recently, gene-based antiangiogenic therapy has become an emerging strategy that has attracted considerable interest. However, potential complications with the use of viral vectors, such as potential genotoxicity resulting from long-term expression and nonspecific targeting, cannot be ignored. The use of ocular nanosystems (ONS) based on nanotechnology has emerged as a great advantage in ocular disease treatment during the last two decades. The potential functions of ONS range from nanocarriers, which deliver drugs and genes to target sites in the eye, to therapeutic agents themselves. Various preclinical studies conducted to date have demonstrated promising results of the use of ONS in the treatment of CNV. In this review, we provide an overview of CNV and its current therapeutic strategies and summarize the properties and applications of various ONS related to the treatment of CNV reported to date. Our goal is to provide a comprehensive review of these considerable advances in ONS in the field of CNV therapy over the past two decades to fill the gaps in previous related reports. Finally, we discuss existing challenges and future perspectives of the use of ONS in CNV therapy, with the goal of providing a theoretical contribution to facilitate future practical growth in the area.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yuan Yin
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanxia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yuanping Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhaoying Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lingzhi Niu
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China,Correspondence: Yajuan Zheng, Email
| |
Collapse
|
6
|
Nanoparticle-mediated corneal neovascularization treatments: Toward new generation of drug delivery systems. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Guo C, Liu Y, Li Y. Adverse effects of amorphous silica nanoparticles: Focus on human cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124626. [PMID: 33296760 DOI: 10.1016/j.jhazmat.2020.124626] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Amorphous silica nanoparticle (SiNPs) has tremendous potential for a host of applications, while its mass production, broad application and environmental release inevitably increase the risk of human exposure. SiNPs could enter into the human body through different routes such as inhalation, ingestion, skin contact and even injection for medical applications. The cardiovascular system is gradually recognized as one of the primary sites for engineered NPs exerting adverse effects. Accumulating epidemiological or experimental evidence support the association between SiNPs exposure and adverse cardiovascular effects. However, this topic is still in its infancy, and the literature shows high inter-study variability and even contradictory results. New challenges still present in the safety evaluation of SiNPs, and its toxicological mechanisms are poorly understood. Here, scientific papers related to cardiovascular studies of SiNPs in vivo and in vitro were selected, and the updated particle-caused cardiovascular toxicity and potential mechanisms were summarized. Moreover, the understanding of how factors primarily including exposure dose, route of administration, particle size and surface properties, influence the interaction between SiNPs and cardiovascular system was discussed. In particular, the adverse outcome pathway (AOP) framework by which SiNPs cause deleterious effects in the cardiovascular system was described, aiming to provide useful information necessary for the regulatory decision and to guide a safer application of nanotechnology.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Chen X, Zhu S, Hu X, Sun D, Yang J, Yang C, Wu W, Li Y, Gu X, Li M, Liu B, Ge L, Gu Z, Xu H. Toxicity and mechanism of mesoporous silica nanoparticles in eyes. NANOSCALE 2020; 12:13637-13653. [PMID: 32567638 DOI: 10.1039/d0nr03208e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study on the safety of nanomaterials in eyes is still in its early stages. In this study, we put our focus on the effect of one important nanoparticle feature - large surface area - to assess eye safety. To this end, mesoporous silica nanoparticles (MSiNPs) were for the first time employed as a model to evaluate their toxicity in eyes. The porosity of the MSiNPs endows them with a large surface area and the ability to attach to surrounding chemical or biological molecules, further enhancing their surface reactivity and toxic effects. Therefore, to better mimic MSiNP exposure in real environments, we also introduced other hazardous substances such as silver ions (Ag+) to the system and then investigated their synergistic nanotoxicity. Our results showed that the exposure to MSiNPs-Ag+ and even Ag+ at a safe dose, resulted in more significant toxicity than the MSiNPs alone, as evidenced from cell viability, apoptosis, reactive oxygen species (ROS) production, and DNA damage experiments. RNA-Sequencing analysis revealed that the mRNA surveillance signalling pathway plays a unique role in regulating MSiNPs-Ag+-induced cytotoxicity. Besides this, severe corneal damage and dry eye were observed in rat models upon exposure to MSiNPs-Ag+ compared to MSiNPs. Most importantly, we also proposed a protein corona-based therapy to treat MSiNP-induced corneal disease, where the corneal damage could be rescued by fetal bovine serum (FBS) treatment.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China and Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xisu Hu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Dayu Sun
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Junling Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Cao Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Wei Wu
- Institute of Orbital Disease, 3rd Medical Center of the Chinese PLA General Hospital, Beijing 100039, China
| | - Yijian Li
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Xianliang Gu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Minghui Li
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Bo Liu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China. and College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| |
Collapse
|
9
|
Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Farhad W, Rabbani F, Fahad S. The potential applications of picotechnology in biomedical and environmental sciences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:133-142. [PMID: 31832939 DOI: 10.1007/s11356-019-06554-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Picotechnology development in vast disciplines is mainly attributed to the research and development (R and D) on nanotechnology. Being a parent technology, nanotechnology is the cornerstone of picotechnology. Like nanotechnology, the reference standard for picotechnology is nature, the cellular and subcellular functioning. Some studies have highlighted that the functional margin of similar type of molecules at picoscale (10-12) goes higher than at nanoscale (10-9). In this review, the potential applications of picotechnology have been evaluated especially in the disciplines of biomedical and environmental sciences. Extended surface area and improved electrical, chemical, optical, and mechanical properties make picotechnological products even better than nanomaterials. The fundamental objective of this study is to bring the attention of the scientific world towards the picoscale interventions and to highlight the wide scope of picotechnology as a newly emerging technology with applications in numerous sectors. Picotechnology has made it possible to measure very small structure in advance biomedical and environmental sciences studies. Adequate developments in picotechnology will certainly change human lives in near future because it will make possible for the research world to dive into systems and structures on picoscale. It will render a platform through which explorers can travel into ultra-small areas, which will lead to the creation of new dimensions as well as new opportunities. Eventually, in future, the picotechnology will become smaller enough to give birth to femtotechnology (10-15) in real-world applications.
Collapse
Affiliation(s)
- Muhammad Zeeshan Qasim
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094, People's Republic of China
| | - Hafiz Mohkum Hammad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Farhat Abbas
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Shafqat Saeed
- Department of Entomology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Wajid Nasim
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Wajid Farhad
- University College of Dera Murad Jamali Naseerabad, Sub-Campus Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Faiz Rabbani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Shah Fahad
- Department of Agriculture, The University of Swabi, Ambar, Khyber Pakhtunkhwa, Pakistan.
- College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, China.
| |
Collapse
|
10
|
Sun JG, Jiang Q, Zhang XP, Shan K, Liu BH, Zhao C, Yan B. Mesoporous silica nanoparticles as a delivery system for improving antiangiogenic therapy. Int J Nanomedicine 2019; 14:1489-1501. [PMID: 30880960 PMCID: PMC6396882 DOI: 10.2147/ijn.s195504] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Antiangiogenic drugs usually have short-acting efficacy and poor treatment compliance. The purpose of this study was to determine whether mesoporous silica nanoparticles (MSNs) could be utilized as a nanodrug delivery system for improving antiangiogenic therapy. MATERIALS AND METHODS MSN-encapsulated bevacizumab nanoparticles were prepared by the nanocasting strategy and characterized by Fourier transform infrared, transmission electron microscopy, and Brunauer-Emmett-Teller method. Encapsulation efficiency and drug loading efficiency of MSN-encapsulated bevacizumab nanoparticles were calculated. The pharmacokinetics, cytotoxicity, and tissue toxicity were evaluated in vitro and in vivo. The antiangiogenic effects of MSN-bevacizumab nanoparticles were evaluated in vitro and in vivo. RESULTS MSN encapsulation could prolong the residency of bevacizumab in vitreous/aqueous humor and maintain the long-lasting drug concentration. MSN-encapsulated bevacizumab nanoparticles did not show any obvious cytotoxicity and tissue toxicity. MSN-encapsulated bevacizumab nanoparticles were more effective than bevacizumab in suppressing vascular endothelial growth factor-induced endothelial cell proliferation, migration, and tube formation in vitro. MSN-encapsulated bevacizumab nanoparticles showed sustained inhibitory effects on corneal neovascularization and retinal neovascularization in vivo. CONCLUSION This study provides a novel strategy of encapsulating bevacizumab to protect and deliver it, which could increase the time between administration and formulation shelf-life. MSN-encapsulated bevacizumab is a promising drug delivery alternative of antiangiogenic therapy.
Collapse
Affiliation(s)
- Jian-Guo Sun
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
- NHC Key Laboratory of Myopia, Fudan University, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Pei Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Kun Shan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Bai-Hui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Chen Zhao
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Biao Yan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
- NHC Key Laboratory of Myopia, Fudan University, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,
| |
Collapse
|
11
|
Hu H, Shi Y, Zhang Y, Wu J, Asweto CO, Feng L, Yang X, Duan J, Sun Z. Comprehensive gene and microRNA expression profiling on cardiovascular system in zebrafish co-exposured of SiNPs and MeHg. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:795-805. [PMID: 28711009 DOI: 10.1016/j.scitotenv.2017.07.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Air pollution has been shown to increase cardiovascular diseases. However, little attention has been paid to the combined effects of PM and air pollutants on the cardiovascular system. To explore this, a high-throughput sequencing technology was used to determine combined effects of silica nanoparticles (SiNPs) and MeHg in zebrafish. Our study demonstrated that SiNPs and MeHg co-exposure could cause significant changes in mRNA and miRNA expression patterns in zebrafish. The differentially expressed (DE) genes in profiles 17 and 26 of STC analysis suggest that SiNPs and MeHg co-exposure had more proinflammatory and cardiovascular toxicity in zebrafish than single exposure. Major gene functions associated with cardiovascular system in the co-exposed zebrafish were discerned from the dynamic-gene-network, including stxbp1a, celf4, ahr1b and bai2. In addition, the prominently expressed pathway of cardiac muscle contraction was targeted by 3 DE miRNAs identified by the miRNA-pathway-network (dre-miR-7147, dre-miR-26a and dre-miR-375), which included 23 DE genes. This study presents a global view of the combined SiNPs and MeHg toxicity on the dynamic expression of both mRNAs and miRNAs in zebrafish, and could serve as fundamental research clues for future studies, especially on cardiovascular system toxicity.
Collapse
Affiliation(s)
- Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jing Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Collins Otieno Asweto
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
12
|
Safety of Nonporous Silica Nanoparticles in Human Corneal Endothelial Cells. Sci Rep 2017; 7:14566. [PMID: 29109483 PMCID: PMC5674045 DOI: 10.1038/s41598-017-15247-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
Nonporous silica nanoparticles (SiNPs) are promising drug carrier platforms for intraocular drug delivery. In this study, we investigated the safety of three different sizes of SiNPs (50, 100, and 150 nm) in a human corneal endothelial cell (HCEC) line, B4G12. The HCECs were exposed to different concentrations (0, 25, 50, and 100 µg/ml) of three sizes of SiNPs for up to 48 h. Cellular viability, autophagy, lactate dehydrogenase (LDH) assay, and mammalian target of rapamycin (mTOR) pathway activation were evaluated. Intracellular distribution of the SiNPs was evaluated with transmission electron microscopy (TEM). TEM revealed that the SiNPs were up-taken by the HCECs inside cytoplasmic vacuoles. No mitochondrial structural damage was observed. Both cellular viability and LDH level remained unchanged with up to 100 µg/mL of SiNP treatment. Autophagy showed a significant dose-dependent activation with 50, 100, and 150 nm SiNPs. However, the mTOR activation remained unchanged. Human corneal tissue culture with 100 µg/ml concentrations of SiNPs for 72 h revealed no significant endothelial toxicity. In vivo corneal safety of the SiNPs (0.05 ml intracameral injection, 200 mg/ml concentration) was also verified in rabbit models. These findings suggested that 50, 100, and 150 nm SiNPs did not induce acute significant cytotoxicity in corneal endothelial cells at concentrations up to 100 µg/mL. However, long-term toxicity of SiNPs remains unknown.
Collapse
|
13
|
Park JH, Jeong H, Hong J, Chang M, Kim M, Chuck RS, Lee JK, Park CY. The Effect of Silica Nanoparticles on Human Corneal Epithelial Cells. Sci Rep 2016; 6:37762. [PMID: 27876873 PMCID: PMC5120337 DOI: 10.1038/srep37762] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Ocular drug delivery is an interesting field in current research. Silica nanoparticles (SiNPs) are promising drug carriers for ophthalmic drug delivery. However, little is known about the toxicity of SiNPs on ocular surface cells such as human corneal epithelial cells (HCECs). In this study, we evaluated the cytotoxicity induced by 50, 100 and 150 nm sizes of SiNPs on cultured HCECs for up to 48 hours. SiNPs were up-taken by HCECs inside cytoplasmic vacuoles. Cellular reactive oxygen species generation was mildly elevated, dose dependently, with SiNPs, but no significant decrease of cellular viability was observed up to concentrations of 100 μg/ml for three different sized SiNPs. Western blot assays revealed that both cellular autophagy and mammalian target of rapamycin (mTOR) pathways were activated with the addition of SiNPs. Our findings suggested that 50, 100 and 150 nm sized SiNPs did not induce significant cytotoxicity in cultured HCECs.
Collapse
Affiliation(s)
- Joo-Hee Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Hyejoong Jeong
- School of Chemical Engineering and Material Science, Chung-Ang University, Seoul, South Korea
| | - Jinkee Hong
- School of Chemical Engineering and Material Science, Chung-Ang University, Seoul, South Korea
| | - Minwook Chang
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Martha Kim
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Roy S Chuck
- Department of Ophthalmology and Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jimmy K Lee
- Department of Ophthalmology and Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Choul-Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| |
Collapse
|