1
|
Downregulation of hsa-miR-4328 and target gene prediction in Acute Promyelocytic Leukemia. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction: Acute promyelocytic leukemia (APL) is defined by the PML-RARA fusion gene. APL treatment can have significant side effects, therefore the development of optimal therapeutic options is crucial. Although the study of miRNAs is still in its infancy, it has been shown that these molecules are involved in the pathogenesis of neoplasms by modulating the expression of target genes. miRNAs can be considered possible biomarkers in APL and can be used as therapeutic targets or as markers for the therapeutic response.
Objectives: The purpose of this study was to determine whether differentially expressed putative miRNAs that have RARA as a target gene could be considered reliable biomarkers for APL.
Methods: Using bioinformatics tools, a panel of 6 miRNAs with possible tropism for the RARA gene was selected from miRDB. We evaluated their expression levels in samples from patients with APL (n=20) or from healthy subjects without mutations in genes associated with leukemia or myeloproliferative diseases (n=21).
Results: All 6 putative miRNAs were identified using electrophoresis (hsamir-4299, hsa-mir-4328, hsa-mir-7851-3p, hsa-mir-6827-5p, hsa-mir-6867-5p, hsa-mir-939-5p). Of the six miRNAs, hsa-mir-4328 is deeply downregulated in subjects diagnosed with APL compared to healthy subjects, whereas hsa-mir-4299 and hsa-mir-7851-3p show small differences in expression between the two study groups, but without statistical significance. Our results suggest that hsa-mir-4328 may have a role in the pathogenesis of APL and may represent a new biomarker for this type of leukemia. Key Words: miRNA, APL, leukemia, bioinformatics.
Collapse
|
2
|
Clinical Value of Serum miRNA in Patients with Acute Promyelocytic Leukemia. JOURNAL OF ONCOLOGY 2022; 2022:7315879. [PMID: 35401744 PMCID: PMC8993542 DOI: 10.1155/2022/7315879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/05/2022] [Indexed: 12/04/2022]
Abstract
Objective To explore the clinical value of specific miRNA in patients with acute promyelocytic leukemia. Methods 129 patients with acute promyelocytic leukemia diagnosed in our hospital from January 2015 to January 2020 were selected as the observation group. At the same time, 74 patients with nonacute promyelocytic leukemia who underwent bone marrow aspiration were included as the control group. The expression levels of miR-126-5p and miR-13, different characteristic parameters, and prognosis were compared between the two groups, and the clinical significance of miR-126-5p and miR-13 in acute promyelocytic leukemia was analyzed. Results The expression of miR-126-5p (12.31 ± 2.25 versus 17.30 ± 3.28) and miR-13 (16.05 ± 3.47 versus 21.66 ± 2.18) in the observation group was significantly lower than that in the control group (P < 0.05). The expression level of miR-126-5p was significantly correlated with lactate dehydrogenase level, HGB level, NPM1 mutant type, and complete remission (P < 0.05). The expression level of miR-13 was significantly correlated with HGB level, NPM1 mutant type, and complete remission (P < 0.05). Both expression levels of miR-126-5p and miR-13 were not correlated with sex, age, WBC, PLT, proportion of bone marrow primordial cells, hepatomegaly, splenomegaly, lymph node enlargement, and FLT3-ITD (P > 0.05). Cox multivariate regression analysis showed that peripheral blood WBC, bone marrow blast cell count, and miR-126-5p and miR-13 were prognostic factors in patients with acute promyelocytic leukemia (P < 0.05). The sensitivity, specificity, accuracy, and AUC of serum miR-126-5p prediction were 75.83%, 84.56%, 82.17%, and 0.729, respectively. The sensitivity, specificity, accuracy, and AUC of serum miR-13 prediction were 78.64%, 88.49%, 86.20% and 0.882, respectively. Conclusion Serum miR-126-5p and miR-13 are closely related to the prognosis of patients with acute promyelocytic leukemia. Serum miR-126-5p and miR-13 can be used as reliable indexes to predict the prognosis of patients.
Collapse
|
4
|
Zhang X, Liu L, Deng X, Li D, Cai H, Ma Y, Jia C, Wu B, Fan Y, Lv Z. MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene 2018; 38:699-715. [PMID: 30171257 PMCID: PMC6756112 DOI: 10.1038/s41388-018-0447-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
Anaplastic thyroid cancer (ATC) is associated with poor prognosis and is often untreatable. MicroRNA 483-3p (miR-483) and partitioning-defective 3 (Pard3), a member of the Pard family, have functions and regulatory mechanisms in ATC. The abnormal regulation of miR-483 may play an important role in tumorigenesis, and Par3 is known to regulate cell polarity, cell migration, and cell division. Tumor proliferation promoted by the regulation of miRNA expression can be regulated in thyroid cancer by upregulating transforming growth factor-β1 (TGF-β1), which is thought to interact with Pard3. When compared with adjacent non-tumor tissues, we found that miR-483 was upregulated and Pard3 was downregulated in 80 thyroid tumor samples. Disease-free survival was decreased when expression of miR-483 was upregulated and Pard3 expression was downregulated. Cell growth, migration, and invasion were induced by overexpression of miR-483. However, knockdown of miR-483 resulted in a loss of cell invasion and viability, both in vitro and in vivo. The expression of Pard3 was increased by the inhibition of miR-483, but TGF-β1-induced cell migration and invasion were decreased by miR-483 inhibition. A dual-luciferase reporter assay determined that Pard3 expression was downregulated when targeted with miR-483. The epithelial–mesenchymal transition (EMT), as well as Tiam1-Rac signaling, was induced by TGF-β1, which was decreased by the overexpression of Pard3. Pard3 decreased the inhibition of EMT and Tiam-Rac1 signaling, which resulted from transfection of ATC cells with miR-483. Overall, the results showed that downregulation of Pard3 resulted in increased cell invasion and EMT in ATC, which was promoted by treatment with miR-483. These findings suggest novel therapeutic targets and treatment strategies for this disease.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Lin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Xianzhao Deng
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Yushui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Bo Wu
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Youben Fan
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China. .,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China.
| |
Collapse
|
5
|
Li S, Ma Y, Tan Y, Ma X, Zhao M, Chen B, Zhang R, Chen Z, Wang K. Profiling and functional analysis of circular RNAs in acute promyelocytic leukemia and their dynamic regulation during all-trans retinoic acid treatment. Cell Death Dis 2018; 9:651. [PMID: 29844435 PMCID: PMC5973936 DOI: 10.1038/s41419-018-0699-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are a novel class of powerful regulators in gene expression and participate in the pathogenesis of many diseases, including cancer. However, little is known about the roles of circRNAs in the development and treatment of acute promyelocytic leukemia (APL). Here we report the expression profiling and function of circRNAs in APL, including their dynamic regulation during all-trans retinoic acid (ATRA)-induced differentiation. We performed two independent ribosomal RNA-minus RNA-sequencing (Ribo-minus RNA-seq) experiments with and without RNase R treatment on APL patient-derived NB4 cells and identified a total of 4313 circRNAs, including 1098 newly identified circRNAs. Detailed analysis showed that circRNAs expressed in APL cells were mostly exon-derived, not by-products during splicing, and could be distinguished from hematopoietic stem cells, neutrophils and lymphocytes. The true presence and stability of circRNAs were verified both in NB4 cells and primary APL patient samples. Moreover, we conducted a time-series analysis of circRNAs on ATRA-treated NB4 cells and uncovered 508 circRNAs with dynamic expression during ATRA treatment, including 246 upregulated and 262 downregulated. Further evidence demonstrated that the majority of circRNAs were regulated independently of their host linear mRNAs. Detailed functional experiments demonstrated that circ-HIPK2, one of the differentially expressed circRNAs, significantly influenced ATRA-induced differentiation of APL cells. Further mechanistic studies revealed that circ-HIPK2 was located in cytoplasm and served as a sponge for differentiation-associated miR-124-3p. Finally, circ-HIPK2 expression in APL patients was significantly lower than that in normal peripheral mononuclear cells and other subtypes of AML, indicating its potential role as an APL biomarker. Our study indicates the biological functions of circRNAs in the development and treatment of APL, and provides a comprehensive circRNA resource for future studies.
Collapse
Affiliation(s)
- Shufen Li
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlin Ma
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun Tan
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xuefei Ma
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming Zhao
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Chen
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rongsheng Zhang
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|