1
|
Sharma P, Khetarpal P. Genetic Determinants of Selenium Availability, Selenium-Response, and Risk of Polycystic Ovary Syndrome. Biol Trace Elem Res 2024; 202:4843-4857. [PMID: 38227265 DOI: 10.1007/s12011-023-04052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Selenium is a trace element and its deficiency has been associated with the risk of PCOS, a multifactorial syndrome that affects a large number of women worldwide. Several databases and literature were searched to find out genetic variants of the genes involved in selenium uptake, metabolism, and regulation which may be significantly associated with the risk of PCOS through Se-related pathways. Genes that require selenium for their biological actions to perform were also shortlisted. A total of eighteen significantly associated genes with forty-four variants were identified as candidate variants that could play a potential role in the modulation of PCOS risk among the study population. The genetic variant distribution data was available in-house and was obtained through a GWAS study of the North India population. In silico tools were applied to understand the functional impact of these variants. Three variants namely LDLR (rs2228671), TNF (rs1041981), and SAA2 (rs2468844) are strongly associated with PCOS risk and have a functional impact on encoded protein. Certain variants of Se uptake genes such as DIO1, GPX2, TXNRD1, DIO2 and GPX3 are also significantly associated with the risk of PCOS development. "C" allele of the Se transporter gene SELENOP (rs9686343) significantly increases PCOS risk. Other potential genes require selenium for their biological actions and are involved in the inflammatory, antioxidant response, and energy homeostasis signaling pathways. Thus, genetic variants of the population may affect the Se availability in the body. Also, deficiency of Se effects may get modulated due to underlying genetic polymorphism of Se-associated genes. This information may be helpful in dosage adjustment of Se supplementation for a population in order to get maximum benefits.
Collapse
Affiliation(s)
- Priya Sharma
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
2
|
Dávila-Vega JP, Gastelum-Hernández AC, Serrano-Sandoval SN, Serna-Saldívar SO, Guitiérrez-Uribe JA, Milán-Carrillo J, Martínez-Cuesta MC, Guardado-Félix D. Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review. Biol Trace Elem Res 2022:10.1007/s12011-022-03467-1. [PMID: 36342630 DOI: 10.1007/s12011-022-03467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Selenium (Se) is an essential micronutrient with several functions in cellular and molecular anticancer processes. There is evidence that Se depending on its chemical form and the dosage use could act as a modulator in some anticancer mechanisms. However, the metabolism of organic and inorganic forms of dietary selenium converges on the main pathways. Different selenocompounds have been reported to have crucial roles as chemopreventive agents, such as antioxidant activity, activation of apoptotic pathways, selective cytotoxicity, antiangiogenic effect, and cell cycle modulation. Nowadays, great interest has arisen to find therapies that could enhance the antitumor effects of different Se sources. Herein, different studies are reported related to the effects of combinatorial therapies, where Se is used in combination with proteins, polysaccharides, chemotherapeutic agents or as nanoparticles. Another important factor is the presence of single nucleotide polymorphisms in genes related to Se metabolism or selenoprotein synthesis which could prevent cancer. These studies and mechanisms show promising results in cancer therapies. This review aims to compile studies that have demonstrated the anticancer effects of Se at molecular levels and its potential to be used as chemopreventive and in cancer treatment.
Collapse
Affiliation(s)
- Juan Pablo Dávila-Vega
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Ana Carolina Gastelum-Hernández
- Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Sayra N Serrano-Sandoval
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Sergio O Serna-Saldívar
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
| | - Janet A Guitiérrez-Uribe
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, Campus Puebla, Vía Atlixcáyotl 5718, C.P. 72453, Puebla, Pue, México
| | - Jorge Milán-Carrillo
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de La Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Daniela Guardado-Félix
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico.
| |
Collapse
|
3
|
An Integrated In Silico, In Vitro and Tumor Tissues Study Identified Selenoprotein S (SELENOS) and Valosin-Containing Protein (VCP/p97) as Novel Potential Associated Prognostic Biomarkers in Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030646. [PMID: 35158912 PMCID: PMC8833666 DOI: 10.3390/cancers14030646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Triple negative breast cancer (TNBC) represents a clinical challenge because its early relapse, poor overall survival and lack of effective treatments. Altered levels selenoproteins have been correlated with development and progression of some cancers, however, no consistent data are available about their involvement in TNBC. Here we analyzed the expression profile of all twenty-five human selenoproteins in TNBC cells and tissues by a systematic approach, integrating in silico and wet lab approaches. We showed that the expression profiles of five selenoproteins are specifically dysregulated in TNBC. Most importantly, by a bioinformatics analysis, we selected selenoprotein S and its interacting protein valosin-containing protein (VCP/p97) as inter-related with the others and whose coordinated over-expression is associated with poor prognosis in TNBC. Overall, we highlighted two mechanistically related novel proteins whose correlated expression could be exploited for a better definition of prognosis as well as suggested as novel therapeutic target in TNBC. Abstract Background. Triple negative breast cancer (TNBC) is a heterogeneous group of tumors with early relapse, poor overall survival, and lack of effective treatments. Hence, new prognostic biomarkers and therapeutic targets are needed. Methods. The expression profile of all twenty-five human selenoproteins was analyzed in TNBC by a systematic approach.In silicoanalysis was performed on publicly available mRNA expression datasets (Cancer Cell Line Encyclopedia, CCLE and Library of Integrated Network-based Cellular Signatures, LINCS). Reverse transcription quantitative PCR analysis evaluated selenoprotein mRNA expression in TNBC versus non-TNBC and normal breast cells, and in TNBC tissues versus normal counterparts. Immunohistochemistry was employed to study selenoproteins in TNBC tissues. STRING and Cytoscape tools were used for functional and network analysis. Results.GPX1, GPX4, SELENOS, TXNRD1 and TXNRD3 were specifically overexpressed in TNBC cells, tissues and CCLE/LINCS datasets. Network analysis demonstrated that SELENOS-binding valosin-containing protein (VCP/p97) played a critical hub role in the TNBCselenoproteins sub-network, being directly associated with SELENOS expression. The combined overexpression of SELENOS and VCP/p97 correlated with advanced stages and poor prognosis in TNBC tissues and the TCGA dataset. Conclusion. Combined evaluation of SELENOS and VCP/p97 might represent a novel potential prognostic signature and a therapeutic target to be exploited in TNBC.
Collapse
|
4
|
Janowska M, Potocka N, Paszek S, Skrzypa M, Żulewicz K, Kluz M, Januszek S, Baszuk P, Gronwald J, Lubiński J, Zawlik I, Kluz T. An Assessment of GPX1 (rs1050450), DIO2 (rs225014) and SEPP1 (rs7579) Gene Polymorphisms in Women with Endometrial Cancer. Genes (Basel) 2022; 13:genes13020188. [PMID: 35205233 PMCID: PMC8871918 DOI: 10.3390/genes13020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Numerous studies indicate a relationship between the presence of GPX1 (rs1050450), DIO2 (rs225014) and SEPP1 (rs7579) gene polymorphisms and the development of chronic or neoplastic diseases. However, there are no reports on the influence of these polymorphisms on the development of endometrial cancer. Methods: 543 women participated in the study. The study group consisted of 269 patients with diagnosed endometrial cancer. The control group consisted of 274 healthy women. Blood samples were drawn from all the participants. The PCR-RFLP method was used to determine polymorphisms in the DIO2 (rs225014) and GPX1 (rs1050450) genes. The analysis of polymorphisms in the SEPP1 (rs7579) gene was performed by means of TaqMan probes. Results: There was a 1.99-fold higher risk of developing endometrial cancer in CC homozygotes, DIO2 (rs225014) polymorphism (95% Cl 1.14–3.53, p = 0.017), compared to TT homozygotes. There was no correlation between the occurrence of GPX1 (rs1050450) and SEPP1 (rs7579) polymorphisms and endometrial cancer. Conclusion: Carriers of the DIO2 (rs225014) polymorphism may be predisposed to the development of endometrial cancer. Further research confirming this relationship is recommended.
Collapse
Affiliation(s)
- Magdalena Janowska
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland; (M.J.); (S.J.); (T.K.)
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Marzena Skrzypa
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Kamila Żulewicz
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Marta Kluz
- Department of Pathology, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland;
| | - Sławomir Januszek
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland; (M.J.); (S.J.); (T.K.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (J.G.); (J.L.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (J.G.); (J.L.)
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (J.G.); (J.L.)
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Correspondence:
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland; (M.J.); (S.J.); (T.K.)
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
5
|
Lack of Association between Common Polymorphisms in Selenoprotein P Gene and Susceptibility to Colorectal Cancer, Breast Cancer, and Prostate Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6525449. [PMID: 34616844 PMCID: PMC8490044 DOI: 10.1155/2021/6525449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Method We search the PubMed, Embase, Google Scholar, and Wanfang (China) databases (up to December 1, 2020) to identify all eligible publications. The pooled odds ratio (OR) correspondence with 95% confidence interval (CI) was calculated to evaluate the associations. Results Finally, nine eligible studies with 7,157 cases and 6,440 controls and five studies with 2,278 cases and 2,821 controls were enrolled in rs3877899 and rs7579 polymorphisms, individually. However, a null significant association was detected between the two polymorphisms in SEPP1 and susceptibility to colorectal, breast, and prostate cancer in all comparison models. Subsequently, subgroup analysis based on tumor type, no significant association was identified for prostate, breast, and colorectal cancer. In addition, when the stratification analyses were conducted by the source of control, HWE status, and ethnicity, yet no significant association was found. Conclusions The current meta-analysis shows that SEPP1 rs3877899 and rs7579 polymorphisms may not be associated with susceptibility to colon cancer, breast cancer, and prostate cancer, and further well-designed studies with a larger sample size are warranted to validate our findings.
Collapse
|