1
|
汤 莹, 张 湧, 吴 丹, 林 炎, 兰 风. [Detection of pathogenic gene mutations in thirteen cases of congenital bilateral absence of vas deferens infertility patients]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:763-774. [PMID: 39397452 PMCID: PMC11480543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To detect the cystic fibrosis transmembrane transduction regulator (CFTR) gene mutations and congenital bilateral absence of vas deferens (CBAVD) susceptibility gene mutations in patients with CBAVD, and to explore their association with the risk of CBAVD. METHODS Whole-exome sequencing and Sanger sequencing validation were conducted on the pathogenic genes CFTR, adhesion G protein-coupled receptor G2 (ADGRG2), sodium channel epithelial 1 subunit beta (SCNN1B), carbonic anhydrase 12 (CA12), and solute carrier family 9 member A3 (SLC9A3) in thirteen cases of isolated CBAVD patients. The polymorphic loci, intron and flanking sequences of CFTR gene were amplified by polymerase chain reaction (PCR) followed by Sanger sequencing. Bioinformatics methods were employed for conservative analysis and deleterious prediction of novel susceptibility gene mutations in CBAVD. Genetic analysis was performed on the pedigree of one out of thirteen patients with CBAVD to evaluate the risk of inheritance in offspring. RESULTS Exome sequencing revealed CFTR gene exon mutations in only six of the thirteen CBAVD patients, with six missense mutations c.2684G>A(p.Ser895Asn), c.4056G>C(p.Gln1352His), c.2812G>(p.Val938Leu), c.3068T>G(p.Ile1023Arg), c.374T>C(p.Ile125Thr), c.1666A>G(p.Ile556Val)), and one nonsense mutation (c.1657C>T(p.Arg553Ter). Among these six patients, two also had the CFTR homozygous p.V470 site, additionally, mutations in CFTR gene exon regions were not detected in the remaining seven patients. Within the thirteen CBAVD patients, three carried the homozygous p.V470 polymorphic site, four carried the 5T allele, two carried the TG13 allele, and ten carried the c.-966T>G site. Four CBAVD patients simultaneously carried 2-3 of the aforementioned CFTR gene mutation sites. Susceptibility gene mutations in CBAVD among the thirteen patients included one ADGRG2 missense mutation c.2312A>G(p.Asn771Ser), two SLC9A3 missense mutations c.2395T>C(p.Cys799Arg), c.493G>A(p.Val165Ile), one SCNN1B missense mutation c.1514G>A(p.Arg505His), and one CA12 missense mutation c.1061C>T (p.Ala354Val). Notably, the SLC9A3 gene c.493G>A (p.Val165Ile) mutation site was first identified in CBAVD patients. The five mutations exhibited an extremely low population mutation frequency in the gnomAD database, classifying them as rare mutations. Predictions from Mutation Taster and Polyphen-2 software indicated that the harmfulness level of the SLC9A3 gene c.493G>A (p.Val165Ile) site and the SCNN1B gene c.1514G>A (p.Arg505His) site were disease causing and probably damaging. The genetic analysis of one pedigree revealed that the c.1657C>T (p.Arg553Ter) mutation in the proband was a de novo mutation, as neither the proband's father nor mother carried this mutation. The proband and his spouse conceived a daughter through assisted reproductive technology, and the daughter inherited the proband's pathogenic mutation c.1657C>T (p.Arg553Ter). CONCLUSION CFTR gene mutations remain the leading cause of CBAVD in Chinese patients; however, the distribution and frequency of mutations differ from data reported in other domestic and international studies, highlighting the need to expand the CFTR mutation spectrum in Chinese CBAVD patients. The susceptibility genes ADGRG2, SLC9A3, SCNN1B, and CA12 may explain some cases of CBAVD without CFTR mutations. Given the lack of specific clinical manifestations in CBAVD patients, it is recommended that clinicians conduct further physical examinations and consider scrotal or transrectal ultrasound before making a defi-nitive diagnosis. It is advisable to employ CFTR gene mutation testing in preconception genetic screening to reduce the risk of CBAVD and cystic fibrosis in offspring.
Collapse
Affiliation(s)
- 莹 汤
- />福建省移植生物学重点实验室,福建医科大学福总临床医学院(第九〇〇医院),福州 350025Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital of Joint Logistic Support Force, PLA), Fuzhou 350025, China
| | - 湧波 张
- />福建省移植生物学重点实验室,福建医科大学福总临床医学院(第九〇〇医院),福州 350025Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital of Joint Logistic Support Force, PLA), Fuzhou 350025, China
| | - 丹红 吴
- />福建省移植生物学重点实验室,福建医科大学福总临床医学院(第九〇〇医院),福州 350025Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital of Joint Logistic Support Force, PLA), Fuzhou 350025, China
| | - 炎鸿 林
- />福建省移植生物学重点实验室,福建医科大学福总临床医学院(第九〇〇医院),福州 350025Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital of Joint Logistic Support Force, PLA), Fuzhou 350025, China
| | - 风华 兰
- />福建省移植生物学重点实验室,福建医科大学福总临床医学院(第九〇〇医院),福州 350025Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital of Joint Logistic Support Force, PLA), Fuzhou 350025, China
| |
Collapse
|
2
|
Guo J, Yang Y, Xiang Y, Guo X, Zhang S. Pluronic F127 hydrogel-loaded extracellular vesicles from adipose-derived mesenchymal stem cells promote tracheal cartilage regeneration via SCNN1B delivery. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 58:102748. [PMID: 38663789 DOI: 10.1016/j.nano.2024.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/29/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (AMSC-EVs) have been highlighted as a cell-free therapy due to their regenerative capability to enhance tissue and organ regeneration. Herein, we aimed to examine the mechanism of PF127-hydrogel@AMSC-EVs in promoting tracheal cartilage defect repair. Based on bioinformatics methods, SCNN1B was identified as a key gene for the osteogenic differentiation of AMSCs induced by AMSC-EVs. EVs were isolated from rat AMSCs and then loaded onto thermo-sensitive PF-127 hydrogel to develop PF127-hydrogel@AMSC-EVs. It was established that PF127-hydrogel@AMSC-EVs could effectively deliver SCNN1B into AMSCs, where SCNN1B promoted AMSC osteogenic differentiation. The promotive effect was evidenced by enhanced ALP activity, extracellular matrix mineralization, and expression of s-glycosaminoglycan, RUNX2, OCN, collagen II, PERK, and ATF4. Furthermore, the in vivo experiments revealed that PF127-hydrogel@AMSC-SCNN1B-EVs stimulated tracheal cartilage regeneration in rats through PERK/ATF4 signaling axis activation. Therefore, PF127-hydrogel@AMSC-SCNN1B-EVs may be a novel cell-free biomaterial to facilitate tracheal cartilage regeneration and cartilage injury repair.
Collapse
Affiliation(s)
- Juncheng Guo
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Yijun Yang
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Yang Xiang
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Xueyi Guo
- Central South University, Changsha 410083, PR China.
| | - Shufang Zhang
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China.
| |
Collapse
|
3
|
Cheng H, Yang S, Meng Q, Zheng B, Gu Y, Wang L, Song T, Xu C, Wang G, Han M, Shen L, Ding J, Li H, Ouyang J. Genetic analysis and intracytoplasmic sperm injection outcomes of Chinese patients with congenital bilateral absence of vas deferens. J Assist Reprod Genet 2022; 39:719-728. [PMID: 35119551 PMCID: PMC8995229 DOI: 10.1007/s10815-022-02417-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Congenital bilateral absence of the vas deferens (CBAVD) is a major cause of obstructive azoospermia and male factor infertility. CBAVD is mainly caused by mutations in the genes encoding CFTR (cystic fibrosis transmembrane conductance regulator) and ADGRG2 (adhesion G protein-coupled receptor G2). This study aimed to describe CFTR and ADGRG2 variations in 46 Chinese CBAVD patients and evaluated sperm retrieval and assisted reproductive technology outcomes. METHODS The CFTR and ADGRG2 genes were sequenced and analyzed by whole-exome sequencing (WES), and variations were identified by Sanger sequencing. Bioinformatic analysis was performed. We retrospectively reviewed the outcomes of patients undergoing sperm retrieval surgery and intracytoplasmic sperm injection (ICSI). RESULTS In total, 35 of 46 (76.09%) patients carried at least one variation in CFTR, but no copy number variants or ADGRG2 variations were found. In addition to the IVS9-5 T allele, there were 27 CFTR variations, of which 4 variations were novel and predicted to be damaging by bioinformatics. Spermatozoa were successfully retrachieved in 46 patients, and 39 of the patients had their own offspring through ICSI. CONCLUSION There are no obvious hotspot CFTR mutations in Chinese CBAVD patients besides the IVS9-5 T allele. Therefore, WES might be the best detection method, and genetic counseling should be different from that provided to Caucasian populations. After proper counseling, all patients can undergo sperm retrieval from their epididymis or testis, and most of them can have their own children through ICSI.
Collapse
Affiliation(s)
- Hongbo Cheng
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 Jiangsu China ,Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shenmin Yang
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qingxia Meng
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Bo Zheng
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yidong Gu
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Luyun Wang
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Tao Song
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu China
| | - Chunlu Xu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu China
| | - Gaigai Wang
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mutian Han
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Liyan Shen
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jie Ding
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Li
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Jun Ouyang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
4
|
Cai Z, Li H. Congenital Bilateral Absence of the Vas Deferens. Front Genet 2022; 13:775123. [PMID: 35222530 PMCID: PMC8873976 DOI: 10.3389/fgene.2022.775123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/19/2022] [Indexed: 01/23/2023] Open
Abstract
Congenital bilateral absence of the vas deferens (CBAVD) is clinically characterized by the absence of the bilateral vas deferens; the main clinical manifestation is infertility, accounting for 1–2% of male infertility cases. CBAVD may be accompanied by congenital abnormalities in the urogenital system and cystic fibrosis (CF)-related clinical manifestations. CBAVD can develop as a mild manifestation of CF or can be isolated. The main pathogenic mechanism of CBAVD is gene mutation, and CBAVD and CF have a common genetic mutation background. CFTR mutation is the main pathogenic cause of CBAVD and CF, and ADGRG2 mutation is the second most common cause. Although lack of the vas deferens in CBAVD patients causes infertility due to the inability to release sperm, the testes of CBAVD patients have spermatogenic function. Therefore, CBAVD patients can achieve fertility through sperm retrieval surgery and assisted reproductive technology (ART). However, gene mutations in CBAVD patients can have an impact on the ART outcome, and there is a risk of passing on gene mutations to offspring. For CBAVD patients and their spouses, performing genetic counseling (which currently refers mainly to CFTR mutation screening) helps to reduce the risks of genetic mutations being passed on to offspring and of offspring having CF with concomitant CBAVD.
Collapse
|
5
|
Liao CM, Tan GH, You MF, Li JZ, Wu L, Qin YY, Zhang YY. Genetic variants in SCNN1B and AHCYL1 are associated with eggshell quality in Chinese domestic laying ducks ( Anas platyrhynchos). Br Poult Sci 2021; 63:454-465. [PMID: 34923880 DOI: 10.1080/00071668.2021.2019678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The objective of this study was to investigate the evolution of SCNN1B and AHCYL1 proteins among 10 domestic and mammalian animals, to uncover the expression patterns of SCNN1B and AHCYL1 genes in ducks, identify the genetic variants of the SCNN1B and AHCYL1 genes and analyse their effects on eggshell quality.2. Expression profiles of the SCNN1B and AHCYL1 genes in Sansui female ducks were determined using real-time fluorescence quantitative PCR to identify SNPs. The duck SCNN1B and AHCYL1 genes were amplified to identify SNPs. A total of 502 Sansui female ducks were genotyped by sequencing, and the associations between the mRNA expression/SNP genotypes and six eggshell quality indices were analysed using PASW Statistics 18.0.3. The results showed that the SCNN1B and AHCYL1 proteins are highly conserved in different mammalian or domestic animals, especially the AHCYL1 protein. The SCNN1B and AHCYL1 genes were widely expressed in different tissues of male and female ducks, and expression level in the uterus was greater than in other tissues. The expression of SCNN1B and AHCYL1 during oviposition cycle indicated that expression levels were related to the eggshell mineralisation stage.4. The mRNA expression levels of uterine SCNN1B and AHCYL1 genes were positively correlated with eggshell strength (ESS), percentage (ESP) and weight (ESW) (P<0.05), respectively. Ten novel SNPs in SCNN1B and AHCYL1 genes from Chinese domestic laying ducks were identified through PCR amplicon sequencing.5. Genetic association analysis indicated g.797509 C > T, g.797573 C > T and g.797834 C > T in SCNN1B gene and g.169244 T > A, g.169265 T > C and g.175311T > C in AHCYL1 gene had a significant effect on eggshell quality. Correlation analysis between the SNP genotype and SCNN1B and AHCYL1 genes expression in the uterus showed that the genotypes of g.797509 C>T, g.797573 C>T, g.797834 C>T, g.169244 T>A and g.175311T>C sites affected the expression of SCNN1B and AHCYL1 genes in utero (P<0.05).6. The study indicated SCNN1B and AHCYL1 as candidate genes to improve eggshell traits in ducks.
Collapse
Affiliation(s)
- Chao-Mei Liao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, People's Republic of China
| | - Guang-Hui Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, People's Republic of China
| | - Ming-Fang You
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, People's Republic of China
| | - Jie-Zhang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, People's Republic of China
| | - Lei Wu
- China Guizhou Anshun Lihua Animal Husbandry Co., Ltd
| | - Yuan-Yu Qin
- Agriculture and Rural Bureau of zhijin county, Guizhou Province, China
| | - Yi-Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, People's Republic of China
| |
Collapse
|
6
|
Sudhakar DVS, Shah R, Gajbhiye RK. Genetics of Male Infertility - Present and Future: A Narrative Review. J Hum Reprod Sci 2021; 14:217-227. [PMID: 34759610 PMCID: PMC8527069 DOI: 10.4103/jhrs.jhrs_115_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Infertility affects 8%–12% of couples worldwide with a male factor contributing to nearly 50% of couples either as a primary or contributing cause. Several genetic factors that include single-gene and multiple-gene defects associated with male infertility were reported in the past two decades. However, the etiology remains ambiguous in a majority of infertile men (~40%). The objective of this narrative review is to provide an update on the genetic factors associated with idiopathic male infertility and male reproductive system abnormalities identified in the last two decades. We performed a thorough literature search in online databases from January 2000 to July 2021. We observed a total of 13 genes associated with nonobstructive azoospermia due to maturation/meiotic arrest. Several studies that reported novel genes associated with multiple morphological abnormalities of the sperm flagella are also discussed in this review. ADGRG2, PANK2, SCNN1B, and CA12 genes are observed in non-CFTR-related vas aplasia. The genomic analysis should be quickly implemented in clinical practice as the detection of gene abnormalities in different male infertility phenotypes will facilitate genetic counseling.
Collapse
Affiliation(s)
- Digumarthi V S Sudhakar
- Department of Gamete Immunobiology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Rupin Shah
- Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Rahul K Gajbhiye
- Clinical Research Lab and Andrology Clinic, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Tan MQ, Huang WJ, Lan FH, Xu YJ, Zheng MY, Tang Y. Genetic mutation analysis of 22 patients with congenital absence of vas deferens: A single-center study†. Biol Reprod 2021; 106:108-117. [PMID: 34673937 DOI: 10.1093/biolre/ioab194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Congenital absence of the vas deferens (CAVD), a congenital malformation of the male reproductive system, causes obstructive azoospermia and male infertility. Currently, the cystic fibrosis transmembrane conductance regulator (CFTR) has been recognized as the main pathogenic gene in CAVD, with some other genes, such as adhesion G-protein coupled receptor G2 (ADGRG2), solute carrier family 9 isoform 3 (SLC9A3), sodium channel epithelial 1 subunit beta (SCNN1B), and carbonic anhydrase 12 (CA12) being candidate genes in the pathogenesis of CAVD. However, the frequency and spectrum of these mutations, as well as the pathogenic mechanisms of CAVD, have not been fully investigated. Here, we sequenced all genes with potentially pathogenic mutations using next-generation sequencing and verified all identified variants by Sanger sequencing. Further bioinformatic analysis was performed to predict the pathogenicity of mutations. We described the distribution of the p.V470M, poly-T, and TG-repeat CFTR polymorphisms, and identified novel missense mutations in the CFTR and SLC9A3 genes, respectively. Taken together, we identified mutations in the CFTR, ADGRG2, SLC9A3, SCNN1B, and CA12 genes in 22 patients with CAVD, thus broadening the genetic spectrum of Chinese patients with CAVD.
Collapse
Affiliation(s)
- Mao-Qing Tan
- Department of Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China.,Department of Clinical Laboratory, Dongfang Hospital Affiliated to Xiamen University, Fuzhou, Fujian, 350025, P.R. China
| | - Wu-Jian Huang
- Center for Reproductive Medicine, 900TH Hospital of Joint Logistic Support Force, Fuzhou, Fujian, 350025, P.R. China
| | - Feng-Hua Lan
- Laboratory of Basic Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, P.R. China
| | - Yong-Jun Xu
- Laboratory of Basic Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, P.R. China
| | - Mei-Yu Zheng
- Laboratory of Basic Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, P.R. China
| | - Ying Tang
- Laboratory of Basic Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, P.R. China
| |
Collapse
|
8
|
DEMİR EKŞİ D, YILMAZ E, AKIN Y, USTA MF, BAŞAR MM, KAHRAMAN S, ERMAN M, ALPER ÖM. Copy Number Variation Analysis in Turkish Patients with Congenital Bilateral Absence of Vas Deferens. ACTA MEDICA ALANYA 2021. [DOI: 10.30565/medalanya.966940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Bieth E, Hamdi SM, Mieusset R. Genetics of the congenital absence of the vas deferens. Hum Genet 2020; 140:59-76. [PMID: 32025909 PMCID: PMC7864840 DOI: 10.1007/s00439-020-02122-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/28/2020] [Indexed: 01/19/2023]
Abstract
Congenital absence of the vas deferens (CAVD) may have various clinical presentations depending on whether it is bilateral (CBAVD) or unilateral (CUAVD), complete or partial, and associated or not with other abnormalities of the male urogenital tract. CBAVD is usually discovered in adult men either during the systematic assessment of cystic fibrosis or other CFTR-related conditions, or during the exploration of isolated infertility with obstructive azoospermia. The prevalence of CAVDs in men is reported to be approximately 0.1%. However, this figure is probably underestimated, because unilateral forms of CAVD in asymptomatic fertile men are not usually diagnosed. The diagnosis of CAVDs is based on clinical, ultrasound, and sperm examinations. The majority of subjects with CAVD carry at least one cystic fibrosis-causing mutation that warrants CFTR testing and in case of a positive result, genetic counseling prior to conception. Approximately 2% of the cases of CAVD are hemizygous for a loss-of-function mutation in the ADGRG2 gene that may cause a familial form of X-linked infertility. However, despite this recent finding, 10–20% of CBAVDs and 60–70% of CUAVDs remain without a genetic diagnosis. An important proportion of these unexplained CAVDs coexist with a solitary kidney suggesting an early organogenesis disorder (Wolffian duct), unlike CAVDs related to CFTR or ADGRG2 mutations, which might be the result of progressive degeneration that begins later in fetal life and probably continues after birth. How the dysfunction of CFTR, ADGRG2, or other genes such as SLC29A3 leads to this involution is the subject of various pathophysiological hypotheses that are discussed in this review.
Collapse
Affiliation(s)
- Eric Bieth
- Service de Génétique Médicale, Hôpital Purpan, CHU, 31059, Toulouse, France.
| | - Safouane M Hamdi
- Service de Biochimie, Institut Fédératif de Biologie, CHU, 31059, Toulouse, France.,EA3694 (Groupe de Recherche en Fertilité Humaine), Université Toulouse III, 31059, Toulouse, France
| | - Roger Mieusset
- EA3694 (Groupe de Recherche en Fertilité Humaine), Université Toulouse III, 31059, Toulouse, France.,Département d'Andrologie (Groupe Activité Médecine de la Reproduction), CHU, 31059, Toulouse, France
| |
Collapse
|