1
|
Mia MAR, Dey D, Sakib MR, Biswas MY, Prottay AAS, Paul N, Rimti FH, Abdullah Y, Biswas P, Iftehimul M, Paul P, Sarkar C, El-Nashar HAS, El-Shazly M, Islam MT. The efficacy of natural bioactive compounds against prostate cancer: Molecular targets and synergistic activities. Phytother Res 2023; 37:5724-5754. [PMID: 37786304 DOI: 10.1002/ptr.8017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Globally, prostate cancer (PCa) is regarded as a challenging health issue, and the number of PCa patients continues to rise despite the availability of effective treatments in recent decades. The current therapy with chemotherapeutic drugs has been largely ineffective due to multidrug resistance and the conventional treatment has restricted drug accessibility to malignant tissues, necessitating a higher dosage resulting in increased cytotoxicity. Plant-derived bioactive compounds have recently attracted a great deal of attention in the field of PCa treatment due to their potent effects on several molecular targets and synergistic effects with anti-PCa drugs. This review emphasizes the molecular mechanism of phytochemicals on PCa cells, the synergistic effects of compound-drug interactions, and stem cell targeting for PCa treatment. Some potential compounds, such as curcumin, phenethyl-isothiocyanate, fisetin, baicalein, berberine, lutein, and many others, exert an anti-PCa effect via inhibiting proliferation, metastasis, cell cycle progression, and normal apoptosis pathways. In addition, multiple studies have demonstrated that the isolated natural compounds: d-limonene, paeonol, lanreotide, artesunate, and bicalutamide have potential synergistic effects. Further, a significant number of natural compounds effectively target PCa stem cells. However, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals against PCa.
Collapse
Affiliation(s)
- Md Abdur Rashid Mia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Musfiqur Rahman Sakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Md Yeaman Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Niloy Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Fahmida Hoque Rimti
- Bachelor of Medicine and Surgery, Chittagong Medical College, Chawkbazar, Bangladesh
| | - Yusuf Abdullah
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Md Iftehimul
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| |
Collapse
|
2
|
Abir MH, Mahamud AGMSU, Tonny SH, Anu MS, Hossain KHS, Protic IA, Khan MSU, Baroi A, Moni A, Uddin MJ. Pharmacological potentials of lycopene against aging and aging-related disorders: A review. Food Sci Nutr 2023; 11:5701-5735. [PMID: 37823149 PMCID: PMC10563689 DOI: 10.1002/fsn3.3523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 10/13/2023] Open
Abstract
Aging and aging-related chronic disorders are one of the principal causes of death worldwide. The prevalence of these disorders is increasing gradually and globally. Considering this unwavering acceleration of the global burden, seeking alternatives to traditional medication to prevent the risk of aging disorders is needed. Among them, lycopene, a carotenoid, is abundant in many fruits and vegetables, including tomatoes, grapefruits, and watermelons, and it has a unique chemical structure to be a potent antioxidant compound. This nutraceutical also possesses several anti-aging actions, including combating aging biomarkers and ameliorating several chronic disorders. However, no systematic evaluation has yet been carried out that can comprehensively elucidate the effectiveness of lycopene in halting the course of aging and the emergence of chronic diseases linked to aging. This review, therefore, incorporates previous pre-clinical, clinical, and epidemiological studies on lycopene to understand its potency in treating aging disorders and its role as a mimic of caloric restriction. Lycopene-rich foods are found to prevent or attenuate aging disorders in various research. Based on the evidence, this review suggests the clinical application of lycopene to improve human health and alleviate the prevalence of aging and aging disorders.
Collapse
Affiliation(s)
- Mehedy Hasan Abir
- ABEx Bio‐Research CenterDhakaBangladesh
- Faculty of Food Science and TechnologyChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - A. G. M. Sofi Uddin Mahamud
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Food Safety and Regulatory ScienceChung‐Ang UniversityAnseong‐siGyeonggi‐doRepublic of Korea
| | - Sadia Haque Tonny
- Faculty of AgricultureBangladesh Agricultural UniversityMymensinghBangladesh
| | - Mithila Saha Anu
- Department of Fisheries Biology and GeneticsFaculty of Fisheries, Bangladesh Agricultural UniversityMymensinghBangladesh
| | | | - Ismam Ahmed Protic
- Department of Plant PathologyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Md Shihab Uddine Khan
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Artho Baroi
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Akhi Moni
- ABEx Bio‐Research CenterDhakaBangladesh
| | | |
Collapse
|
3
|
Karaköy Z, Cadirci E, Dincer B. A New Target in Inflammatory Diseases: Lycopene. Eurasian J Med 2022; 54:23-28. [PMID: 36655441 PMCID: PMC11163352 DOI: 10.5152/eurasianjmed.2022.22303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/30/2022] [Indexed: 01/19/2023] Open
Abstract
Inflammation is a response to various injuries, illnesses, and severe trauma. The primary function of inflammation is to combat pathogens, eliminate them from the body, and initiate wound healing. However, inflammation also contributes to numerous diseases, such as cancer, cardiovascular disease, diabetes, obesity, osteoporosis, rheumatoid arthritis, inflammatory bowel disease, and asthma. As the importance of nutrition in maintaining human health has become increasingly recognized, the consumption of natural antioxidants has gained popularity, especially in developed countries. A growing body of research has shown that consuming foods rich in lycopene can protect individuals from a range of conditions, including cancer, heart disease, and other diseases. As a result, lycopene is gaining recognition as a potential protective antioxidant in the fields of medicine and pharmacology. This review aims to highlight the effects of lycopene on inflammatory diseases and provide a foundational understanding for researchers interested in further research on lycopene.
Collapse
Affiliation(s)
- Zeynep Karaköy
- Department of Pharmacology, Erzincan Binali Yildirim University, Faculty of Pharmacy, Erzincan, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Ataturk University, Faculty of Medicine, Erzurum, Turkey
| | - Busra Dincer
- Department of Pharmacology, Erzincan Binali Yildirim University, Faculty of Pharmacy, Erzincan, Turkey
| |
Collapse
|
4
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
5
|
Magne TM, da Silva de Barros AO, de Almeida Fechine PB, Alencar LMR, Ricci-Junior E, Santos-Oliveira R. Lycopene as a Multifunctional Platform for the Treatment of Cancer and Inflammation. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022. [DOI: 10.1007/s43450-022-00250-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
7
|
Wang S, Wu H, Zhu Y, Cui H, Yang J, Lu M, Cheng H, Gu L, Xu T, Xu L. Effect of Lycopene on the Growth Performance, Antioxidant Enzyme Activity, and Expression of Gene in the Keap1-Nrf2 Signaling Pathway of Arbor Acres Broilers. Front Vet Sci 2022; 9:833346. [PMID: 35359683 PMCID: PMC8964064 DOI: 10.3389/fvets.2022.833346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to determine the effect of dietary lycopene supplementation on the growth performance, antioxidant enzyme activity of serum and liver, and gene expressions associated with Kelch-like ech-associated protein-1 (Keap1)/Nuclear Factor E2-related factor 2 (Nrf2) pathway in liver of Arbor Acres broilers. A total of 288 1-day-old male broilers were randomly divided into 4 treatments with 6 replicates and 12 chickens for each replicate. The control group was fed with the basal diet, while the treated groups were fed with the basal diet with 10, 20, and 30 mg/kg lycopene in powder. Feed and water were provided ad libitum for 42 days. Compared with the control group, (a) the average daily gain increased (p = 0.002 vs. p = 0.001) and the feed conversion ratio decreased (p = 0.017 vs. p = 0.023) in groups treated with lycopene in the grower and whole phases, and the average daily feed intake was quadratically affected (p = 0.043) by lycopene in the grower phase; (b) the serum superoxide dismutase content was linearly affected (p = 0.035) by lycopene at 21 days; (c) the serum glutathione peroxidase content, superoxide dismutase content, and total antioxidant capability were higher (p = 0.014, p = 0.003, and p = 0.016, respectively) in the 30 mg/kg lycopene group at 42 days; (d) the liver glutathione peroxidase and superoxide dismutase contents in groups treated with lycopene were higher (p ≤ 0.001 vs. p ≤ 0.001) at 21 days; (e) the liver glutathione peroxidase content was higher (p ≤ 0.001) in the 20 and 30 mg/kg lycopene groups, at 42 days; (f) the mRNA expression levels of Nrf2, superoxide dismutase 2, NAD(P)H quinone dehydrogenase 1, and heme oxygenase 1 genes were higher (21 days: p = 0.042, p = 0.021, p = 0.035, and p = 0.043, respectively; 42 days: p = 0.038, p = 0.025, p = 0.034, and p = 0.043, respectively) in the 20 and 30 mg/kg lycopene groups at 21 and 42 days. The 30 mg/kg lycopene concentration improved the growth performance, antioxidant enzyme activity in serum and liver, and gene expression in the Keap1-Nrf2 signaling pathway of Arbor Acres broilers.
Collapse
Affiliation(s)
- Sibo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yunhui Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hongxia Cui
- Inner Mongolia Ordos City Agricultural and Forestry Technology Extension Center, Ordos, China
| | - Ji Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mingyuan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Huangzuo Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary, Hainan Academy of Agricultural Science, Haikou, China
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Li Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- *Correspondence: Li Xu
| |
Collapse
|
8
|
Laranjeira T, Costa A, Faria-Silva C, Ribeiro D, de Oliveira JMPF, Simões S, Ascenso A. Sustainable Valorization of Tomato By-Products to Obtain Bioactive Compounds: Their Potential in Inflammation and Cancer Management. Molecules 2022; 27:1701. [PMID: 35268802 PMCID: PMC8911995 DOI: 10.3390/molecules27051701] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Tomato producing and processing industries present undoubted potential for industrial discarded products valorization whether due to the overproduction of fresh tomatoes or to the loss during processing. Although tomato by-products are not yet considered a raw material, several studies have suggested innovative and profitable applications. It is often referred to as "tomato pomace" and is quite rich in a variety of bioactive compounds. Lycopene, vitamin C, β-carotene, phenolic compounds, and tocopherol are some of the bioactives herein discussed. Tomato by-products are also rich in minerals. Many of these compounds are powerful antioxidants with anti-inflammatory properties besides modulating the immune system. Several researchers have focused on the possible application of natural ingredients, especially those extracted from foods, and their physiological and pharmacological effects. Herein, the effects of processing and further applications of the bioactive compounds present in tomato by-products were carefully reviewed, especially regarding the anti-inflammatory and anti-cancer effects. The aim of this review was thus to highlight the existing opportunities to create profitable and innovative applications for tomato by-products in health context.
Collapse
Affiliation(s)
- Tânia Laranjeira
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Ana Costa
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (C.F.-S.)
| | - Catarina Faria-Silva
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (C.F.-S.)
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.R.); (J.M.P.F.d.O.)
- Faculty of Agrarian Sciences and Environment, University of the Azores, 9700-042 Angra do Heroísmo, Portugal
| | - José Miguel P. Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.R.); (J.M.P.F.d.O.)
| | - Sandra Simões
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (C.F.-S.)
| | - Andreia Ascenso
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (C.F.-S.)
| |
Collapse
|
9
|
Chainumnim S, Saenkham A, Dolsophon K, Chainok K, Suksamrarn S, Tanechpongtamb W. Stem Extract from Momordica cochinchinensis Induces Apoptosis in Chemoresistant Human Prostate Cancer Cells (PC-3). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041313. [PMID: 35209099 PMCID: PMC8878451 DOI: 10.3390/molecules27041313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022]
Abstract
Natural compounds have been recognized as valuable sources for anticancer drug development. In this work, different parts from Momordica cochinchinensis Spreng were selected to perform cytotoxic screening against human prostate cancer (PC-3) cells. Chromatographic separation and purification were performed for the main constituents of the most effective extract. The content of the fatty acids was determined by Gas Chromatography-Flame Ionization Detector (GC–FID). Chemical structural elucidation was performed by spectroscopic means. For the mechanism of the apoptotic induction of the most effective extract, the characteristics were evaluated by Hoechst 33342 staining, sub-G1 peak analysis, JC-1 staining, and Western blotting. As a result, extracts from different parts of M. cochinchinensis significantly inhibited cancer cell viability. The most effective stem extract induced apoptosis in PC-3 cells by causing nuclear fragmentation, increasing the sub-G1 peak, and changing the mitochondrial membrane potential. Additionally, the stem extract increased the pro-apoptotic (caspase-3 and Noxa) mediators while decreasing the anti-apoptotic (Bcl-xL and Mcl-1) mediators. The main constituents of the stem extract are α-spinasterol and ligballinol, as well as some fatty acids. Our results demonstrated that the stem extract of M. cochinchinensis has cytotoxic and apoptotic effects in PC-3 cells. These results provide basic knowledge for developing antiproliferative agents for prostate cancer in the future.
Collapse
Affiliation(s)
- Seksom Chainumnim
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand;
| | - Audchara Saenkham
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; (A.S.); (K.D.)
| | - Kulvadee Dolsophon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; (A.S.); (K.D.)
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand;
| | - Sunit Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; (A.S.); (K.D.)
- Correspondence: (S.S.); (W.T.); Tel.: +66-813446669 (W.T.)
| | - Wanlaya Tanechpongtamb
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand;
- Correspondence: (S.S.); (W.T.); Tel.: +66-813446669 (W.T.)
| |
Collapse
|
10
|
Systemic Effects Reflected in Specific Biomarker Patterns Are Instrumental for the Paradigm Change in Prostate Cancer Management: A Strategic Paper. Cancers (Basel) 2022; 14:cancers14030675. [PMID: 35158943 PMCID: PMC8833369 DOI: 10.3390/cancers14030675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is reported as the most common malignancy and second leading cause of death in America. In Europe, PCa is considered the leading type of tumour in 28 European countries. The costs of treating PCa are currently increasing more rapidly than those of any other cancer. Corresponding economic burden is enormous, due to an overtreatment of slowly developing disease on one hand and underestimation/therapy resistance of particularly aggressive PCa subtypes on the other hand. The incidence of metastatic PCa is rapidly increasing that is particularly characteristic for young adults. PCa is a systemic multi-factorial disease resulting from an imbalanced interplay between risks and protective factors. Sub-optimal behavioural patterns, abnormal stress reactions, imbalanced antioxidant defence, systemic ischemia and inflammation, mitochondriopathies, aberrant metabolic pathways, gene methylation and damage to DNA, amongst others, are synergistically involved in pathomechanisms of PCa development and progression. To this end, PCa-relevant systemic effects are reflected in liquid biopsies such as blood patterns which are instrumental for predictive diagnostics, targeted prevention and personalisation of medical services (PPPM/3P medicine) as a new paradigm in the overall PCa management. This strategic review article highlights systemic effects in prostate cancer development and progression, demonstrates evident challenges in PCa management and provides expert recommendations in the framework of 3P medicine.
Collapse
|
11
|
Carvalho GC, de Camargo BAF, de Araújo JTC, Chorilli M. Lycopene: From tomato to its nutraceutical use and its association with nanotechnology. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Khan UM, Sevindik M, Zarrabi A, Nami M, Ozdemir B, Kaplan DN, Selamoglu Z, Hasan M, Kumar M, Alshehri MM, Sharifi-Rad J. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2713511. [PMID: 34840666 PMCID: PMC8626194 DOI: 10.1155/2021/2713511] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
As an antioxidant, lycopene has acquired importance as it prevents autoxidation of fats and related products. Tomatoes are an important agricultural product that is a great source of lycopene. It contains many vitamins and minerals, fiber, and carbohydrates and is associated with various positive effects on health. The antioxidant potential of tomatoes is substantially explained with lycopene compounds. Diet is a major risk factor for heart diseases which is shown as the most important cause of death in the world. It has been observed that the lycopene taken in the diet has positive effects in many stages of atherosclerosis. The serum lipid levels, endothelial dysfunction, inflammation, blood pressure, and antioxidative potential are mainly affected by lycopene. These natural antioxidants, which can also enhance the nutritional value of foods, may lead to new ways if used in food preservation. In this review study, the antioxidant potential and cardiovascular protection mechanism of lycopene are discussed.
Collapse
Affiliation(s)
- Usman Mir Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Mustafa Sevindik
- Bahçe Vocational High School, Osmaniye Korkut Ata University, 80500 Osmaniye, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Sariyer, Istanbul, Turkey
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Betul Ozdemir
- Department of Cardiology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Dilara Nur Kaplan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karabuk University, Karabuk 78050, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde 51240, Turkey
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal 462038, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
13
|
Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
|
14
|
A Perspective on Withania somnifera Modulating Antitumor Immunity in Targeting Prostate Cancer. J Immunol Res 2021; 2021:9483433. [PMID: 34485538 PMCID: PMC8413038 DOI: 10.1155/2021/9483433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/07/2021] [Indexed: 01/07/2023] Open
Abstract
Medicinal plants serve as a lead source of bioactive compounds and have been an integral part of day-to-day life in treating various disease conditions since ancient times. Withaferin A (WFA), a bioactive ingredient of Withania somnifera, has been used for health and medicinal purposes for its adaptogenic, anti-inflammatory, and anticancer properties long before the published literature came into existence. Nearly 25% of pharmaceutical drugs are derived from medicinal plants, classified as dietary supplements. The bioactive compounds in these supplements may serve as chemotherapeutic substances competent to inhibit or reverse the process of carcinogenesis. The role of WFA is appreciated to polarize tumor-suppressive Th1-type immune response inducing natural killer cell activity and may provide an opportunity to manipulate the tumor microenvironment at an early stage to inhibit tumor progression. This article signifies the cumulative information about the role of WFA in modulating antitumor immunity and its potential in targeting prostate cancer.
Collapse
|
15
|
Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: Therapeutic prospect with herbal medicine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100034. [PMID: 34909665 PMCID: PMC8663990 DOI: 10.1016/j.crphar.2021.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, India
| | | | - Vinod K. Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Andhra Pradesh, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
16
|
Puah BP, Jalil J, Attiq A, Kamisah Y. New Insights into Molecular Mechanism behind Anti-Cancer Activities of Lycopene. Molecules 2021; 26:molecules26133888. [PMID: 34202203 PMCID: PMC8270321 DOI: 10.3390/molecules26133888] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Lycopene is a well-known compound found commonly in tomatoes which brings wide range of health benefits against cardiovascular diseases and cancers. From an anti-cancer perspective, lycopene is often associated with reduced risk of prostate cancer and people often look for it as a dietary supplement which may help to prevent cancer. Previous scientific evidence exhibited that the anti-cancer activity of lycopene relies on its ability to suppress oncogene expressions and induce proapoptotic pathways. To further explore the real potential of lycopene in cancer prevention, this review discusses the new insights and perspectives on the anti-cancer activities of lycopene which could help to drive new direction for research. The relationship between inflammation and cancer is being highlighted, whereby lycopene suppresses cancer via resolution of inflammation are also discussed herein. The immune system was found to be a part of the anti-cancer system of lycopene as it modulates immune cells to suppress tumor growth and progression. Lycopene, which is under the family of carotenoids, was found to play special role in suppressing lung cancer.
Collapse
Affiliation(s)
- Boon-Peng Puah
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +603-9289-7533
| | - Ali Attiq
- Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Malaysia;
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
17
|
Lycopene Attenuates Hypoxia-Induced Testicular Injury by Inhibiting PROK2 Expression and Activating PI3K/AKT/mTOR Pathway in a Varicocele Adult Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3471356. [PMID: 34055003 PMCID: PMC8149244 DOI: 10.1155/2021/3471356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/27/2020] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
Purpose The aim of this study was to evaluate the effect of lycopene on hypoxia-induced testicular injury in rat model and explore the underlying mechanism. Methods Six-week-old male Wistar rats (n = 36) were randomly divided into three groups (n = 12/group): a normal group (NG, sham control), a varicocele group (VG), and a varicocele treated by lycopene group (VLG). Bilateral renal veins constriction was performed on rats in VG and VLG. Simultaneously, rats in VLG were treated to lycopene by intragastric administration. Four weeks later, sperm was collected for sperm analysis. Testes and epididymides were harvested for morphological change analysis, histologic analysis, ELISA, qRT-PCR, and western blot. Results Our observations were that lycopene improved the hypoxia-induced testicular injury in vivo. Prokineticin 2(PROK2) and prokineticin receptor 2 (PROKR2) were overexpressed in VG (P < 0.01), and lycopene inhibited the PROK2 expression (P < 0.01). Proliferating cell nuclear antigen (PCNA) and sex hormones were increased by lycopene in VLG (P < 0.05). Lycopene restored the quality and activity of sperm by blocking PROK2 expression (P < 0.05). The expression of VEGF was increased, as HIF-1/NF-κB pathway was upregulated in VLG (P < 0.05). Meanwhile, expression of pAKT/AKT in VLG was higher than that in VG (P < 0.05). In addition, lycopene reduced levels of interleukin-1β (IL-1β) and interleukin-2 (IL-2) in VLG (P < 0.05), compared to NG. Conclusions Lycopene improved the hypoxia-induced testicular injury by inhibiting the expression of PROK2 and decreasing levels of IL-1β and IL-2, which might show us a novel and promising treatment for varicocele testicular injury.
Collapse
|
18
|
Luo J, Ke D, He Q. Dietary Tomato Consumption and the Risk of Prostate Cancer: A Meta-Analysis. Front Nutr 2021; 8:625185. [PMID: 34017849 PMCID: PMC8129008 DOI: 10.3389/fnut.2021.625185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/08/2021] [Indexed: 12/03/2022] Open
Abstract
Objective: Several epidemiological studies have linked tomato products consumption with prostate cancer risk; however, the findings yielded inconsistent results. The aim of the present meta-analysis is to summary the evidence on this association based on eligible cohort studies. Materials and Methods: A comprehensive literature search of articles was performed in March 2021 using PubMed, ISI Web of Science, and Scopus databases. A random-effects model was used to calculate the combined relative risks (RRs) and their corresponding 95% confidence intervals (CIs). Heterogeneity across studies was assessed using Cochran's Q statistic and the I 2 score. Results: A total of 10 prospective studies were finally included in our meta-analysis. There was no evidence of a significant association between tomato products consumption and prostate cancer risk (RR 0.91, 95% CI 0.79-1.03, P = 0.138). Subgroup meta-analyses were performed by tomato types, geographical region, publication year, study quality and number of cases. No significant associations were observed in any subgroups (all P > 0.05). No significant publication bias was observed using Begg's test (P = 0.602) or Egger's test (P = 0.957). Conclusion: The results of this meta-analysis indicated that tomato consumption was not related with the risk of prostate cancer. Further prospective large-scale cohort studies are still warranted to verify our findings.
Collapse
Affiliation(s)
- Jie Luo
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | | | | |
Collapse
|
19
|
Bockuviene A, Zalneravicius R, Sereikaite J. Preparation, characterization and stability investigation of lycopene-chitooligosaccharides complexes. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Prostate cancer and food-based antioxidants in India as plausible therapeutics. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Plant-Based Food By-Products: Prospects for Valorisation in Functional Bread Development. SUSTAINABILITY 2020. [DOI: 10.3390/su12187785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The industrial and small-scale processing of plant-based food materials is associated with by-products that may have a negative impact on the environment but could add value to bread-based products. The bioactivity of plant-based food by-products, their impact on the properties of functional bread, and their bioavailability/bioaccessibility leading to potential health effects when consumed was reviewed. Plant-based food by-products which may be added to bread include rice bran, wheat bran, corn bran, grape pomace/seed extract, tomato seed/skin, and artichoke stems/leaves. These by-products contain high concentrations of bioactive compounds, including phenolics, bioactive peptides, and arabinoxylan. Pre-treatment procedures, including fermentation and thermal processing, impact the properties of plant-based by-products. In most cases, bread formulated with flour from plant-based by-products demonstrated increased fibre and bioactive compound contents. In terms of the sensory and nutritional acceptability of bread, formulations with an average of 5% flour from plant-based by-products produced bread with acceptable sensory properties. Bread enriched with plant-based by-products demonstrated enhanced bioavailability and bioaccessibility and favourable bioactive properties in human blood, although long-term studies are warranted. There is a need to investigate the bioactive properties of other underutilised plant-based by-products and their potential application in bread as a sustainable approach towards improving food and nutrition security.
Collapse
|
22
|
Mirahmadi M, Azimi-Hashemi S, Saburi E, Kamali H, Pishbin M, Hadizadeh F. Potential inhibitory effect of lycopene on prostate cancer. Biomed Pharmacother 2020; 129:110459. [PMID: 32768949 DOI: 10.1016/j.biopha.2020.110459] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Studying prostate cancer is important due to its high annual incidences and mortality rates in the world. Although prostate cancer mortality rates are reduced using new therapy, complicated routes and side effects of these current drugs require a daily available treatment for prevention. Lycopene is a natural, prominent, and effective product which has a high value in diet. The anti-cancer effect, non-toxicity, safety and preventive or therapeutic roles of lycopene have been investigated in several studies. In the current review, we have collected information about the anti-cancer, anti-progressive and apoptotic effects of lycopene on prostate cancer. This article is a summary of the most important original and review articles on lycopene and its anticancer effects that are systematically categorized and presents information about the molecular structure, different sources, biological functions, and its in-vivo and in-vitro effects of lycopene on variety of cancerous and normal cells. The clinical studies provide a clear image for continuous use of this adjunctive dietary for different type of cancers, especially prostate cancer in men. In addition, this article discusses the various molecular pathways activated by lycopene that eventually prevent or suppress cancer. Lycopene has been found to effectively suppress the progression and proliferation, arrest in-cell cycle, and induce apoptosis of prostate cancer cells in both in-vivo and in-vitro conditions. Additionally, lycopene showed that it could modulate the signaling pathways and their protein for the treatment or prevention of prostate cancer.
Collapse
Affiliation(s)
- Mahdi Mirahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cancer Research, Nastran Center for Cancer Prevention (NCCP), Mashhad, Iran
| | - Shayan Azimi-Hashemi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mandana Pishbin
- Iranian Blood Transfusion Organization, Khorasan Razavi Center, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Li H, Chen A, Zhao L, Bhagavathula AS, Amirthalingam P, Rahmani J, Salehisahlabadi A, Abdulazeem HM, Adebayo O, Yin X. Effect of tomato consumption on fasting blood glucose and lipid profiles: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2020; 34:1956-1965. [PMID: 32243013 DOI: 10.1002/ptr.6660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
Tomato (Solanum lycopersicum) phytochemicals, which include phytoene, phytofluene, beta-carotene, flavonoids, lycopene, and polyphenols, have been shown to improve the effects of fasting on plasma triglyceride (TG), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), total cholesterol (TC), and fasting blood sugar (FBS). The aim of this study was to systematically evaluate the effects of Tomato TC, TG, HDL, LDL, and FBS in humans. A systematic literature search was conducted in PubMed/MEDLINE, Web of sciences, and SCOPUS databases by two researchers for studies published until August of 2019 without language and time limitations. Results were combined with random effect models. Six studies were included in this meta-analysis. Combined results reveal a significant reduction in cholesterol (weighted mean difference [WMD]: -4.39 mg/dl, 95% CI: -7.09, -1.68, I2 = % 48, p heterogeneity: .05), TG (WMD: -3.94 mg/dl, 95% CI: -7.67, -0.21, I2 = % 90, p heterogeneity: .001), LDL levels (WMD: -2.09 mg/dl, 95% CI: -3.73, -0.81, I2 = % 78, p heterogeneity: .001), and increasing in HDL levels (WMD: 2.25 mg/dl, 95% CI: 0.41, 4.10, I2 = % 97, p heterogeneity: .001). Tomato was found to have a higher reduction effect on TG and LDL in younger participants. While pooled results indicate no significant effect on FBS levels (WMD: 0.59 mg/dl, 95% CI: -0.28, 1.46, I2 = % 95, p heterogeneity: .001). In conclusion, the results indicate a significant reduction in total cholesterol, TG, and LDL and increase in HDL levels that is caused by tomato consumption.
Collapse
Affiliation(s)
- Hao Li
- Department of Endocrinology, Shandong Provincial Third Hospital, Shandong University, Jinan City, Shandong Province, China
| | - Airong Chen
- Health Management Center, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Li Zhao
- Department of Pediatrics, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Akshaya S Bhagavathula
- Department of Internal Medicine, College of Medicine and Health Sciences, UAE University, Al Ain, UAE
| | | | - Jamal Rahmani
- Department of Community Nutrition, Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ammar Salehisahlabadi
- Department of Community Nutrition, Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Oladimeji Adebayo
- Department of Medicine, University College Hospital, Ibadan, Nigeria
| | - Xiao Yin
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
24
|
Mechanistic understanding of β-cryptoxanthin and lycopene in cancer prevention in animal models. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158652. [PMID: 32035228 DOI: 10.1016/j.bbalip.2020.158652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
To better understand the potential function of carotenoids in the chemoprevention of cancers, mechanistic understanding of carotenoid action on genetic and epigenetic signaling pathways is critically needed for human studies. The use of appropriate animal models is the most justifiable approach to resolve mechanistic issues regarding protective effects of carotenoids at specific organs and tissue sites. While the initial impetus for studying the benefits of carotenoids in cancer prevention was their antioxidant capacity and pro-vitamin A activity, significant advances have been made in the understanding of the action of carotenoids with regards to other mechanisms. This review will focus on two common carotenoids, provitamin A carotenoid β-cryptoxanthin and non-provitamin A carotenoid lycopene, as promising chemopreventive agents or chemotherapeutic compounds against cancer development and progression. We reviewed animal studies demonstrating that β-cryptoxanthin and lycopene effectively prevent the development or progression of various cancers and the potential mechanisms involved. We highlight recent research that the biological functions of β-cryptoxanthin and lycopene are mediated, partially via their oxidative metabolites, through their effects on key molecular targeting events, such as NF-κB signaling pathway, RAR/PPARs signaling, SIRT1 signaling pathway, and p53 tumor suppressor pathways. The molecular targets by β-cryptoxanthin and lycopene, offer new opportunities to further our understanding of common and distinct mechanisms that involve carotenoids in cancer prevention. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
|
25
|
Antioxidants as Adjuvants in Periodontitis Treatment: A Systematic Review and Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9187978. [PMID: 31428231 PMCID: PMC6679881 DOI: 10.1155/2019/9187978] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/18/2019] [Accepted: 06/03/2019] [Indexed: 01/20/2023]
Abstract
This systematic review with meta-analysis aimed to evaluate the effect of antioxidants as an adjuvant in periodontitis treatment. The following databases were consulted: PubMed, Scopus, Web of Science, Cochrane, Lilacs, OpenGrey, and Google Scholar. Based on the PICO strategy, the inclusion criteria comprised interventional studies including periodontitis patients (participants) treated with conventional therapy and antioxidants (intervention) compared to patients treated only with conventional therapy (control) where the periodontal response (outcome) was evaluated. The risk of bias was evaluated using the Cochrane RoB tool (for randomized studies) and ROBINS-I tool (for nonrandomized studies). Quantitative data were analyzed in five random effects meta-analyses considering the following periodontal parameters: clinical attachment loss (CAL), plaque index (PI), gingival index (GI), bleeding on probing (BOP), and probing depth (PD). After all, the level of certainty was measured with the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) tool. Among the 1884 studies identified, only 15 interventional studies were according to the eligibility criteria and they were included in our review. From them, 4 articles presented a high risk of bias. The meta-analysis showed a statistically significant difference for CAL (SMD 0.29 (0.04, 0.55), p = 0.03, I 2 = 13%), PI (SMD 0.41 (0.18, 0.64), p = 0.0005, I 2 = 47%), and BOP (SMD 0.55 (0.27, 0.83), p = 0.0001, I 2 = 0%). The GRADE tool showed a moderate to high certainty in the quality of evidence depending on the clinical parameter and antioxidants used. These results suggest that the use of antioxidants is an adjunct approach to nonsurgical periodontal therapy which may be helpful in controlling the periodontal status.
Collapse
|
26
|
Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, D'Arcangelo D, Norelli S, Valle G, Nisini R, Beninati S, Tabolacci C, Jadeja RN. Beneficial Role of Phytochemicals on Oxidative Stress and Age-Related Diseases. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8748253. [PMID: 31080832 PMCID: PMC6475554 DOI: 10.1155/2019/8748253] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/11/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022]
Abstract
Aging is related to a number of functional and morphological changes leading to progressive decline of the biological functions of an organism. Reactive Oxygen Species (ROS), released by several endogenous and exogenous processes, may cause important oxidative damage to DNA, proteins, and lipids, leading to important cellular dysfunctions. The imbalance between ROS production and antioxidant defenses brings to oxidative stress conditions and, related to accumulation of ROS, aging-associated diseases. The purpose of this review is to provide an overview of the most relevant data reported in literature on the natural compounds, mainly phytochemicals, with antioxidant activity and their potential protective effects on age-related diseases such as metabolic syndrome, diabetes, cardiovascular disease, cancer, neurodegenerative disease, and chronic inflammation, and possibly lower side effects, when compared to other drugs.
Collapse
Affiliation(s)
- Cinzia Forni
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Stefano Pieretti
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Daniela D'Arcangelo
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Sandro Norelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgia Valle
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Nisini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Ravirajsinh N. Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
27
|
Exley K, Reynolds CR, Suckling L, Chee SM, Tsipa A, Freemont PS, McClymont D, Kitney RI. Utilising datasheets for the informed automated design and build of a synthetic metabolic pathway. J Biol Eng 2019; 13:8. [PMID: 30675181 PMCID: PMC6339355 DOI: 10.1186/s13036-019-0141-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The automation of modular cloning methodologies permits the assembly of many genetic designs. Utilising characterised biological parts aids in the design and redesign of genetic pathways. The characterisation information held on datasheets can be used to determine whether a biological part meets the design requirements. To manage the design of genetic pathways, researchers have turned to modelling-based computer aided design software tools. RESULT An automated workflow has been developed for the design and build of heterologous metabolic pathways. In addition, to demonstrate the powers of electronic datasheets we have developed software which can transfer part information from a datasheet to the Design of Experiment software JMP. To this end we were able to use Design of Experiment software to rationally design and test randomised samples from the design space of a lycopene pathway in E. coli. This pathway was optimised by individually modulating the promoter strength, RBS strength, and gene order targets. CONCLUSION The use of standardised and characterised biological parts will empower a design-oriented synthetic biology for the forward engineering of heterologous expression systems. A Design of Experiment approach streamlines the design-build-test cycle to achieve optimised solutions in biodesign. Developed automated workflows provide effective transfer of information between characterised information (in the form of datasheets) and DoE software.
Collapse
Affiliation(s)
- Kealan Exley
- Department of Bioengineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Christopher Robert Reynolds
- Department of Bioengineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Lorna Suckling
- Department of Bioengineering, Imperial College London, London, UK
- The London DNA Foundry, Imperial College London, London, UK
| | - Soo Mei Chee
- Department of Bioengineering, Imperial College London, London, UK
- SynbiCITE, Imperial College London, London, UK
| | - Argyro Tsipa
- Department of Bioengineering, Imperial College London, London, UK
- SynbiCITE, Imperial College London, London, UK
| | - Paul S. Freemont
- SynbiCITE, Imperial College London, London, UK
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | | | - Richard Ian Kitney
- Department of Bioengineering, Imperial College London, London, UK
- SynbiCITE, Imperial College London, London, UK
| |
Collapse
|