1
|
Zhang G, Wen F, Li Y, Sun P, Li Y, Hu Z, Wang H, Ma Y, Liang G, Chen L, Yang K, Hu J. Sulforaphane acts through the NFE2L2/AMPK signaling pathway to protect boar spermatozoa from cryoinjury by activating antioxidant defenses. Theriogenology 2024; 230:330-340. [PMID: 39369625 DOI: 10.1016/j.theriogenology.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
During cryopreservation, a substantial portion of spermatozoa undergoes apoptosis due to cryoinjury, resulting in decreased fertility. Boar spermatozoa are highly sensitive to temperature, with low temperature triggering reactive oxygen species (ROS) generation, leading to oxidative stress and apoptosis. Sulforaphane (SFN), a potent natural compound found in cruciferous vegetables, is efficacious in mitigating oxidative stress. We here supplemented different SFN concentrations (0, 1.25, 2.5, 5, 10, and 20 μM) into the freezing extender to explore its effect on boar sperm during cryopreservation and determine the optimal SFN concentration. Supplementation of 5 μM SFN exhibited the highest sperm motility, motion performance, plasma membrane integrity, acrosome integrity, and antioxidant properties (total antioxidant capacity (T-AOC) and antioxidant enzyme activity) after freezing and thawing. Then, RT group, C group and C + SFN group were established to explore the effect of SFN on the cryopreservation-induced sperm apoptosis level and fertilizing capacity of post-thawed sperms. SFN effectively rescued the apoptosis and fertilizing capacity of post-thawed sperms. Mechanistically, SFN activated the redox-sensitive nuclear factor erythroid 2-related factor 2 (NRF2/NFE2L2) by promoting adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. This activation improved antioxidant defenses, ultimately improving cryoinjury in boar spermatozoa. In summary, SFN suppressed cryopreservation-induced apoptosis of spermatozoa by activating antioxidant defenses and the AMPK/NFE2L2 signaling pathway. These findings suggest a novel approach for augmenting the cryoprotective efficiency and spermatozoa fertility after cryopreservation.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Li
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Province, The Youth Innovation Team of Shaanxi Universities, Zhang Yong Academician Animal Biotechnology Engineering Center, Yangling Vocational & Technical College, Yangling, 712100, Shaanxi, China
| | - Pingyu Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhangtao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Yunhui Ma
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Guodong Liang
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Lin Chen
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Ke Yang
- Dali County Zhongkang Livestock Breeding Co., Ltd., Dali County, 715100, Shanxi, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Góngora A, Holt WV, Gosálvez J. Sperm human biobanking: An overview. Arch Med Res 2024; 55:103130. [PMID: 39591884 DOI: 10.1016/j.arcmed.2024.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
The purpose of this article is to analyze in detail the advantages and disadvantages of sperm cryopreservation, focusing on the cellular and molecular changes that occur during these processes. The main issue is the cellular damage caused by ice crystal formation and osmotic imbalance, along with other secondary effects such as sperm motility and viability, as well as the acrosome reaction or oxidative stress. Another important aspect is the examination of how chromatin structure and DNA integrity affect sperm. Biochemical changes affecting enzyme activity and protein stability have also been analyzed. Finally, the article highlights emerging technologies aimed at reducing the damage caused by sperm cryopreservation, as well as the potential benefits of biobanks as an essential resource for addressing male infertility.
Collapse
Affiliation(s)
| | - William V Holt
- Department of Oncology and Metabolism, The Medical School Beech Hill Road, UK
| | - Jaime Gosálvez
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Structural investigation, computational analysis, and theoretical cryoprotectant approach of antifreeze protein type IV mutants. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:385-403. [PMID: 39327310 DOI: 10.1007/s00249-024-01719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 09/28/2024]
Abstract
Antifreeze proteins (AFPs) have unique features to sustain life in sub-zero environments due to ice recrystallization inhibition (IRI) and thermal hysteresis (TH). AFPs are in demand as agents in cryopreservation, but some antifreeze proteins have low levels of activity. This research aims to improve the cryopreservation activity of an AFPIV. In this in silico study, the helical peptide afp1m from an Antarctic yeast AFP was modeled into a sculpin AFPIV, to replace each of its four α-helices in turn, using various computational tools. Additionally, a new linker between the first two helices of AFPIV was designed, based on a flounder AFPI, to boost the ice interaction activity of the mutants. Bioinformatics tools such as ExPASy Prot-Param, Pep-Wheel, SOPMA, GOR IV, Swiss-Model, Phyre2, MODFOLD, MolPropity, and ProQ were used to validate and analyze the structural and functional properties of the model proteins. Furthermore, to evaluate the AFP/ice interaction, molecular dynamics (MD) simulations were executed for 20, 100, and 500 ns at various temperatures using GROMACS software. The primary, secondary, and 3D modeling analysis showed the best model for a redesigned antifreeze protein (AFP1mb, with afp1m in place of the fourth AFPIV helix) with a QMEAN (Swiss-Model) Z score value of 0.36, a confidence of 99.5%, a coverage score of 22%, and a p value of 0.01. The results of the MD simulations illustrated that AFP1mb had more rigidity and better ice interactions as a potential cryoprotectant than the other models; it also displayed enhanced activity in limiting ice growth at different temperatures.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Alon I, Bussod I, Golan OC, Ravitsky V. Mapping ethical, legal, and social implications (ELSI) of fertility preservation. J Assist Reprod Genet 2024; 41:2495-2514. [PMID: 39141169 PMCID: PMC11405582 DOI: 10.1007/s10815-024-03210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
RESEARCH QUESTION The study examines the ethical, legal, and social implications of fertility preservation, highlighting its importance across oncofertility, elective egg freezing, and posthumous assisted reproduction, as well as its impact on transgender individuals undergoing gender-affirming surgeries. DESIGN A comprehensive analysis of 600 articles, focusing on a diverse range of disciplines, including bioethics, psychology, and sociology, to explore public and healthcare professionals' knowledge, patient experiences, and regulatory constraints. RESULTS The body of literature is growing, indicating increasing recognition of FP's significance. Key themes included the centrality of counseling and informed decision-making, especially in oncofertility and EEF, and ethical debates surrounding informed consent and the autonomy of involved individuals. The analysis underscored a western-centric bias in current research, emphasizing the need for more inclusive and culturally sensitive studies. CONCLUSIONS The study calls for a nuanced understanding of FP, advocating for policies that consider ethical, cultural, and social dimensions. It suggests the necessity for interdisciplinary research to address identified gaps, particularly in understanding non-Western perspectives and ensuring equitable access to FP services globally. Moreover, the review emphasizes the importance of integrating patient-centric approaches and ethical frameworks to guide FP practices and policies, ensuring they respect diverse values and meet individuals' needs.
Collapse
Affiliation(s)
- Ido Alon
- Department of Development Economics, Autonomous University of Madrid, Madrid, Spain.
- University of Montreal, Montreal, Canada.
| | | | - Orit Cherny Golan
- University of Montreal, Montreal, Canada
- Yezreel Valley College, Yezreel Valley, Israel
| | | |
Collapse
|
5
|
Yang YT, Yan B, Guo LN, Liu M, Li YH, Shao ZY, Diao H, Liu SY, Yu HG. Scriptaid is a prospective agent for improving human asthenozoospermic sample quality and fertilization rate in vitro. Asian J Androl 2024; 26:490-499. [PMID: 38856299 PMCID: PMC11449406 DOI: 10.4103/aja202416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/04/2024] [Indexed: 06/11/2024] Open
Abstract
ABSTRACT Male infertility is a global issue caused by poor sperm quality, particularly motility. Enhancement of the sperm quality may improve the fertilization rate in assisted reproductive technology (ART) treatment. Scriptaid, with a novel human sperm motility-stimulating activity, has been investigated as a prospective agent for improving sperm quality and fertilization rate in ART. We evaluated the effects of Scriptaid on asthenozoospermic (AZS) semen, including its impact on motility stimulation and protective effects on cryopreservation and duration of motility, by computer-aided sperm analysis (CASA). Sperm quality improvement by Scriptaid was characterized by increased hyaluronan-binding activity, tyrosine phosphorylation, adenosine triphosphate (ATP) concentration, mitochondrial membrane potential, and an ameliorated AZS fertilization rate in clinical intracytoplasmic sperm injection (ICSI) experiments. Furthermore, our identification of active Scriptaid analogs and different metabolites induced by Scriptaid in spermatozoa lays a solid foundation for the future biomechanical exploration of sperm function. In summary, Scriptaid is a potential candidate for the treatment of male infertility in vitro as it improves sperm quality, prolongs sperm viability, and increases the fertilization rate.
Collapse
Affiliation(s)
- Yi-Ting Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Bin Yan
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li-Na Guo
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Miao Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu-Hua Li
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Zhi-Yu Shao
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Hua Diao
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Su-Ying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - He-Guo Yu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
6
|
Huang C, Ji XR, Huang ZH, Wang RJ, Fan LQ, Zhu WB, Luo Q, Qing-Li. Global status of research on fertility preservation in male patients with cancer: A bibliometric and visual analysis. Heliyon 2024; 10:e33621. [PMID: 39040288 PMCID: PMC11260990 DOI: 10.1016/j.heliyon.2024.e33621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background Recently, male fertility preservation before cancer treatment has become more prevalent. The research in this field has progressed over time, with some studies having a major impact and providing guidance for further research. However, the trends and hotspots of research on fertility preservation in male cancer patients may have changed; exploring them is essential for relevant research progress. Design We extracted relevant studies from the Web of Science Core Collection database, capturing information on the countries of study, affiliations, authors, keywords, as well as co-citations of references and journals. To identify publication trends, research strengths, key subjects, prominent topics, and emerging areas, we conducted a bibliometric analysis using CiteSpace. Results We included 3201 articles on fertility preservation in male cancer patients published over January 1999 to December 2023 were included. Although the relevant research growth rate was slow initially, the number of publications increased annually. Of all study countries, the United States, Germany, and Japan reported the earliest studies; the United States published the highest number of relevant studies. The US institutions remained at the forefront for all 25 years, and the US researcher Ashok Agarwal published the most articles. Literature co-citation analyses indicated a transformation in the study participants; they comprised a younger demographic (i.e., a large number of adolescent male patients underwent fertility preservation); moreover, fertility preservation techniques evolved from sperm cryopreservation to testicular tissue cryopreservation. Research on reproductive outcomes of sperm cryopreservation was the recent hotspot in male fertility preservation research, and the impact of immunotherapy and checkpoint inhibitors on male fertility requires further research. Conclusions Male fertility preservation will be a major future research focus, with closer connections and collaborations between countries and organizations. Our results present the historical data on the development of research on male fertility preservation in cancer patients, providing relevant insights for future research and development in this study area.
Collapse
Affiliation(s)
- Chuan Huang
- The Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, Hunan, China
- Human Sperm Bank, The Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Xi-Ren Ji
- Human Sperm Bank, The Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Zeng-Hui Huang
- The Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, Hunan, China
- Human Sperm Bank, The Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Rui-Jun Wang
- The Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, Hunan, China
| | - Li-Qing Fan
- The Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, Hunan, China
- Human Sperm Bank, The Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Wen-Bing Zhu
- The Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, Hunan, China
- Human Sperm Bank, The Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Qiang Luo
- Human Sperm Bank, The Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Qing-Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Li L, Zhang J, Li Y, Liu B, Yu J, Li N, Wang Z, Zhao J. Probing the Size Effect of Graphene Oxide Nanosheets on Ice Crystal Regulation and Laser-Assisted Rapid Rewarming. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33149-33158. [PMID: 38887025 DOI: 10.1021/acsami.4c05633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Two-dimensional (2D) nanomaterials have attracted many researchers to explore the effect of ice control and rapid deicing due to their functional groups, large specific surface area, and excellent photothermal properties. However, the impact of size effects on ice crystal formation, growth, and photothermal performance has been rarely explored. Here, graphene oxide nanosheets (GO NSs) with controllable sizes were used as a representative of 2D nanomaterials to probe the effect of size on ice crystal regulation and rapid rewarming in cell cryopreservation. All sizes of GO NSs exhibited notable inhibitory effects on ice crystal size during the recrystallization process. Significantly, when the size of GO NSs was smaller than a certain size (<150 nm), they showed a more significant ice recrystallization suppression effects, which could reduce the ice crystal size to about 17% of that of pure water. Meanwhile, the photothermal experiments also indicated that smaller-sized GO NSs exhibited better photothermal behavior, with 90 nm GO NSs (GO-90) heating to 70 °C in just 1 min induced by an 808 nm laser (2 W/cm2). Furthermore, applying GO-90 (200 μg/mL) to cell cryopreservation, cell viability could reach 95.2% and 93% with a low amount of traditional cryoprotectant (2% v/v DMSO) for A549 cells and HeLa cells after recovery, respectively. With the assistance of a 808 nm laser, the rewarming time was also shortened to 20 s, greatly improving the rewarming rate. Our work associated specific sizes of 2D nanomaterials with their ice growth inhibition behaviors during recrystallization and photothermal properties to synergistically improve cell cryopreservation efficiency, providing guidance for effectively designing novel 2D nanomaterials for collaborative control of ice crystals in cell cryopreservation.
Collapse
Affiliation(s)
- Liuyue Li
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Jixiang Zhang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yifang Li
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Bianhua Liu
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Jiali Yu
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Nian Li
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Zhenyang Wang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Jun Zhao
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
8
|
Esmeryan KD, Chaushev TA. Cryopreservation of human semen by inherently-controlled icing probability: Or how the surface profile of superhydrophobic carbon soot coatings and the sperm volume affect the outcome of slow freezing? Cryobiology 2024; 115:104863. [PMID: 38395186 DOI: 10.1016/j.cryobiol.2024.104863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
The restoration of initial functionality of human spermatozoa subjected to cryopreservation is challenging, because the deleterious intracellular icing and the occurrence of osmotic shocks due to prolonged exposure to increased concentrations of intracellular solutes are oppositely dependent on the cooling rate. This longstanding problem could be overcome if using superhydrophobic soot coatings delaying the heat transfer rate, reducing the ice formation probability and triggering balanced and timely dehydration of the cells, but the effect of their surface profile and sperm volume on the success rate of slow freezing is unclear. Here, we show for the first time that the two-factor freezing injury is entirely avoidable by tailoring the solid-to-gas voids (pores) fraction in the soot, leading to increased nucleation free energy barrier, presumable incipiency of ice crystals with controllable shape and size and hence, fully (100 %) recovered post-thaw sperm motility. It is demonstrated that the reason for such a unique scientific result is the selection of soot coatings with appropriate morphochemical features, hypothetically (not directly proven yet) inducing equilibrium among the solution composition and ice crystals formation, retarding the undesirable compression of liquid-filled "slush ice" channels surrounding the cytoplasm and impeding the ice recrystallization. The novel insights introduced in this article open endless horizon for customizing and revolutionizing the technical protocols in cryobiology.
Collapse
Affiliation(s)
- Karekin D Esmeryan
- Acoustoelectronics Laboratory, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72, Tzarigradsko Chaussee Blvd., 1784, Sofia, Bulgaria.
| | - Todor A Chaushev
- Specialized Surgical Hospital "Doctor Malinov", 46, Gotse Delchev Blvd., 1860, Sofia, Bulgaria
| |
Collapse
|
9
|
Podgrajsek R, Bolha L, Pungert T, Pizem J, Jazbec K, Malicev E, Stimpfel M. Effects of Slow Freezing and Vitrification of Human Semen on Post-Thaw Semen Quality and miRNA Expression. Int J Mol Sci 2024; 25:4157. [PMID: 38673743 PMCID: PMC11050687 DOI: 10.3390/ijms25084157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Semen cryopreservation has played an important role in medically assisted reproduction for decades. In addition to preserving male fertility, it is sometimes used for overcoming logistical issues. Despite its proven clinical usability and safety, there is a lack of knowledge of how it affects spermatozoa at the molecular level, especially in terms of non-coding RNAs. Therefore, we conducted this study, where we compared slow freezing and vitrification of good- and poor-quality human semen samples by analyzing conventional sperm quality parameters, performing functional tests and analyzing the expression of miRNAs. The results revealed that cryopreservation of normozoospermic samples does not alter the maturity of spermatozoa (protamine staining, hyaluronan binding), although cryopreservation can increase sperm DNA fragmentation and lower motility. On a molecular level, we revealed that in both types of cryopreservation, miRNAs from spermatozoa are significantly overexpressed compared to those in the native semen of normozoospermic patients, but in oligozoospermic samples, this effect is observed only after vitrification. Moreover, we show that expression of selected miRNAs is mostly overexpressed in native oligozoospermic samples compared to normozoospermic samples. Conversely, when vitrified normozoospermic and oligozoospermic samples were compared, we determined that only miR-99b-5p was significantly overexpressed in oligozoospermic sperm samples, and when comparing slow freezing, only miR-15b-5p and miR-34b-3p were significantly under-expressed in oligozoospermic sperm samples. Therefore, our results imply that cryopreservation of normozoospermic sperm samples can modulate miRNA expression profiles in spermatozoa to become comparable to those in oligozoospermic samples.
Collapse
Affiliation(s)
- Rebeka Podgrajsek
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
| | - Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.B.); (J.P.)
| | - Tjasa Pungert
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
| | - Joze Pizem
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.B.); (J.P.)
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000 Ljubljana, Slovenia; (K.J.); (E.M.)
| | - Elvira Malicev
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000 Ljubljana, Slovenia; (K.J.); (E.M.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Li CY, Liu J, Zheng QY, Liu N, Huang XL, Wu YY, Yao XF, Tan QY, Huang Y, Hu CH, Xu CL. The effect of the mitochondria-targeted antioxidant Mito-tempo during sperm ultra-rapid freezing. Cryobiology 2024; 114:104860. [PMID: 38340888 DOI: 10.1016/j.cryobiol.2024.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
During the freeze-thaw process, human spermatozoa are susceptible to oxidative stress, which may cause cryodamage and reduce sperm quality. As a novel mitochondria-targeted antioxidant, Mito-tempo has been used for sperm cryopreservation. However, it is currently unknown what role it will play in the process of sperm ultra-rapid freezing. The purpose of this study was to investigate whether Mito-tempo can improve sperm quality during ultra-rapid freezing. In this study, samples with the addition of Mito-tempo (0, 5, 10, 20, and 40 μM) to sperm freezing medium were selected to evaluate the changes in sperm quality, antioxidant capacity and ultrastructure after ultra-rapid freezing. After ultra-rapid freezing, the quality and antioxidant function of the spermatozoa were significantly reduced and the spermatozoa ultrastructure was destroyed. The addition of 10 μM Mito-tempo significantly increased post thaw sperm motility, viability, plasma membrane integrity and mitochondrial membrane potential (P < 0.05). Moreover, the DNA fragmentation index (DFI), ROS levels and MDA content were reduced, and the antioxidant enzyme (CAT and SOD) activities were enhanced in the 10 μM Mito-tempo group (P < 0.05). Moreover, Mito-tempo protected sperm ultrastructure from damage. In conclusion, Mito-tempo improved the quality and antioxidant function of sperm after ultra-rapid freezing while reducing freezing-induced ultrastructural damage.
Collapse
Affiliation(s)
- Chun-Yuan Li
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, China
| | - Juan Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Qi-Yuan Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Nian Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Xi-Ling Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Yu-Yin Wu
- College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | | | - Qing-Ying Tan
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, China
| | - Ying Huang
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, China
| | - Chuan-Huo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
| | - Chang-Long Xu
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, China.
| |
Collapse
|
11
|
Tahmasebi M, Rashki Ghaleno L, Dalman A, Rezazadeh Valojerdi M. Cryopreservation of Limited Sperm Using A Combination of Sucrose and Taurine, Loaded on Two Different Devices, and Thawed at Two Different Temperatures. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:173-179. [PMID: 38368522 PMCID: PMC10875307 DOI: 10.22074/ijfs.2023.561957.1369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 02/19/2024]
Abstract
BACKGROUND Cryopreservation of sperm is essential for patients with low sperm counts and couples undergoing infertility treatment. The aim of this study was to compare the effects of Taurine (T) and Sucrose (S) in individual sperm cryopreservation utilizing cryotop and petri dish and thawing at 37 and 42°C. MATERIALS AND METHODS In this experimental study, 17 normospermic semen samples were processed using the "Swim-up" procedure and progressively motile sperm were then isolated from these samples using an inverted microscope. Sperm were added to droplets of "sucrose medium" with 25 mM Taurine antioxidant (S+T) and the commercial cryoprotectant "Sperm Freeze" (CPA), loaded on a petri dish and cryotop. After rapid freezing of the samples, they were thawed at two different temperatures (37°C and 42°C), and the sperm classical parameters, viability, and DNA fragmentation were assessed. RESULTS Statistical analysis displayed a significant increase in total and progressive motility in individual sperm freezing on cryotop with CPA and thawing at 42°C (P<0.05). Other parameters did not show any differences between the CPA and S+T groups and two thawing temperatures in either of the cryopreservation methods. CONCLUSION Although, both cryoprotectants (CPA and S+T) may preserve individual sperm effectively using cryotop, the CPA and thawing at 42°C showed a better effect on the motility percentage of the small number of sperm.
Collapse
Affiliation(s)
- Mouloud Tahmasebi
- Department of Anatomy, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Leila Rashki Ghaleno
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Azam Dalman
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran. Emails: ,
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Shi H, Li QY, Li H, Wang HY, Fan CX, Dong QY, Pan BC, Ji ZL, Li JY. ROS-induced oxidative stress is a major contributor to sperm cryoinjury. Hum Reprod 2024; 39:310-325. [PMID: 38011909 DOI: 10.1093/humrep/dead250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
STUDY QUESTION What is the mechanism behind cryoinjury in human sperm, particularly concerning the interplay between reactive oxygen species (ROS) and autophagy, and how does it subsequently affect sperm fate? SUMMARY ANSWER The freeze-thaw operation induces oxidative stress by generating abundant ROS, which impairs sperm motility and activates autophagy, ultimately guiding the sperm toward programmed cell death such as apoptosis and necrosis, as well as triggering premature capacitation. WHAT IS KNOWN ALREADY Both ROS-induced oxidative stress and autophagy are thought to exert an influence on the quality of frozen-thawed sperm. STUDY DESIGN, SIZE, DURATION Overall, 84 semen specimens were collected from young healthy fertile males, with careful quality evaluation. The specimens were split into three groups to investigate the ROS-induced cryoinjury: normal control without any treatment, sperm treated with 0.5 mM hydrogen peroxide (H2O2) for 1 h, and sperm thawed following cryopreservation. Samples from 48 individuals underwent computer-assisted human sperm analysis (CASA) to evaluate sperm quality in response to the treatments. Semen samples from three donors were analyzed for changes in the sperm proteome after H2O2 treatment, and another set of samples from three donors were analyzed for changes following the freeze-thaw process. The other 30 samples were used for fluorescence-staining and western blotting. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm motility parameters, including progressive motility (PR %) and total motility (PR + NP %), were evaluated using the CASA system on a minimum of 200 spermatozoa. The proteomic profiles were determined with label-free mass spectrometry (MS/MS) and protein identification was performed via ion search against the NCBI human database. Subsequently, comprehensive bioinformatics was applied to detect significant proteomic changes and functional enrichment. Fluorescence-staining and western blot analyses were also conducted to confirm the proteomic changes on selected key proteins. The ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate labeling and the abundance of bioactive mitochondria was determined by evaluating the inner mitochondrial membrane potential (MMP) level. Molecular behaviors of sequestosome-1 (p62 or SQSTM1) and microtubule-associated proteins 1A/1B light chain 3 (LC3) were monitored to evaluate the state of apoptosis in human sperm. Fluorescent probes oxazole yellow (YO-PRO-1) and propidium iodide (PI) were utilized to monitor programmed cell death, namely apoptosis and necrosis. Additionally, gradient concentrations of antioxidant coenzyme Q10 (CoQ10) were introduced to suppress ROS impacts on sperm. MAIN RESULTS AND THE ROLE OF CHANCE The CASA analysis revealed a significant decrease in sperm motility for both the H2O2-treatment and freeze-thaw groups. Fluorescence staining showed that high ROS levels were produced in the treated sperm and the MMPs were largely reduced. The introduction of CoQ10 at concentrations of 20 and 30 μM resulted in a significant rescue of progressive motility (P < 0.05). The result suggested that excessive ROS could be the major cause of sperm motility impairment, likely by damaging mitochondrial energy generation. Autophagy was significantly activated in sperm when they were under oxidative stress, as evidenced by the upregulation of p62 and the increased conversion of LC3 as well as the upregulation of several autophagy-related proteins, such as charged multivesicular body protein 2a, mitochondrial import receptor subunit TOM22 homolog, and WD repeat domain phosphoinositide-interacting protein 2. Additionally, fluorescent staining indicated the occurrence of apoptosis and necrosis in both H2O2-treated sperm and post-thaw sperm. The cell death process can be suppressed when CoQ10 is introduced, which consolidates the view that ROS could be the major contributor to sperm cryoinjury. The freeze-thaw process could also initiate sperm premature capacitation, demonstrated by the prominent increase in tyrosine phosphorylated proteins, verified with anti-phosphotyrosine antibody and immunofluorescence assays. The upregulation of capacitation-related proteins, such as hyaluronidase 3 and Folate receptor alpha, supported this finding. LARGE SCALE DATA The data underlying this article are available in the article and its online supplementary material. LIMITATIONS, REASONS FOR CAUTION The semen samples were obtained exclusively from young, healthy, and fertile males with progressive motility exceeding 60%, which might overemphasize the positive effects while possibly neglecting the negative impacts of cryoinjury. Additionally, the H2O2 treatment conditions in this study may not precisely mimic the oxidative stress experienced by sperm after thawing from cryopreservation, potentially resulting in the omission of certain molecular alterations. WIDER IMPLICATIONS OF THE FINDINGS This study provides substantial proteomic data for a comprehensive and deeper understanding of the impact of cryopreservation on sperm quality. It will facilitate the design of optimal protocols for utilizing cryopreserved sperm to improve applications, such as ART, and help resolve various adverse situations caused by chemotherapy, radiotherapy, and surgery. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from the Major Innovation Project of Research Institute of National Health Commission (#2022GJZD01-3) and the National Key R&D Program of China (#2018YFC1003600). All authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Hui Shi
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Qian-Ying Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Li
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Hai-Yan Wang
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Chuan-Xi Fan
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Qiao-Yan Dong
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Bo-Chen Pan
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jian-Yuan Li
- Institute of Science and Technology, National Health Commission, Beijing, China
| |
Collapse
|
13
|
Huang C, Ji XR, Huang ZH, Liu Q, Wang RJ, Fan LQ, Wu HL, Bo H, Zhu WB. Long-term storage modifies the microRNA expression profile of cryopreserved human semen. BIOMOLECULES & BIOMEDICINE 2024; 24:51-60. [PMID: 37573539 PMCID: PMC10787610 DOI: 10.17305/bb.2023.9421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
The global practice of cryopreservation of human semen is commonplace in Assisted Reproductive Technology (ART) labs and sperm banks. However, information on the effects of long-term cryopreservation on semen is limited to clinical data summaries and descriptions. For this study, we prepared 4 semen specimens of fresh semen, 4 specimens cryostored for at least 1 year, 3 specimens cryostored for at least 5 years, 4 specimens cryostored for at least 10 years, and 3 specimens cryostored for at least 15 years. Total RNA was extracted from each sample, amplified, labeled, and mapped to the known primary microRNA (miRNA) in the miRBase database, enabling the prediction of novel miRNAs. We found that cryopreservation can lead to changes in miRNA expression, and with the increase in storage time, these changes became more pronounced. Meanwhile, the expression of let-7d-3p, let-7c-5p and let-7i-3p miRNAs changed dynamically over cryostorage time in frozen-thawed human sperm. Furthermore, we analyzed the time-dependent dynamics of cryostorage-expressed miRNAs and their target mRNAs and found that half of the target genes were expressed in oocytes. These intersection genes were mainly enriched in cancer and cytoskeletal signaling pathways. Our findings showed that the miRNA expression profile of cryopreserved human semen is modified by long-term storage. Furthermore, as the storage time increases, the impact on human sperm becomes more pronounced in terms of miRNAs, which may have an effect on subsequent fertilization and embryonic development.
Collapse
Affiliation(s)
- Chuan Huang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, Hunan, China
| | - Xi-Ren Ji
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Zeng-Hui Huang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, Hunan, China
| | - Qian Liu
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, Hunan, China
| | - Rui-Jun Wang
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, Hunan, China
| | - Li-Qing Fan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, Hunan, China
| | - Hui-Lan Wu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Hao Bo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, Hunan, China
| | - Wen-Bing Zhu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Albari Shimal RA, Abdulwahid Mohammed A, Al-Essawe EM. Evaluation of Post-Thaw Swim-Up Selection Combined With Glutathione Addition for Improvement of Sperm Chromatin Maturity in Normozoospermic Samples. Cureus 2023; 15:e40313. [PMID: 37448405 PMCID: PMC10337802 DOI: 10.7759/cureus.40313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Cryopreservation of human semen alters the spermatozoal structure, resulting in a reduction in sperm function parameters. Various antioxidants may be able to slow or prevent this type of injury. Glutathione (GSH) has numerous antioxidant properties; supplementing the semen with GSH before freezing may assist in the restoration of post-thaw sperm functionality. OBJECTIVE To investigate the effect of adding 5mM of glutathione before freezing on human sperm cryosurvival. MATERIALS AND METHODS Semen samples were collected from 30 patients (22 normozoospermic and 8 asthenozoospermic) after 3-5 days of sexual abstinence. Following liquefaction, macro- and microscopic examinations were performed. The samples were then divided into two equal aliquots: the first aliquot received 5 mM of glutathione before freezing, and the second aliquot was considered the control (without glutathione). The samples were frozen using the rapid cryopreservation method and then preserved for 7-10 days in a liquid nitrogen tank before being thawed. Thawed samples from each group were examined microscopically according to the WHO 2010 guidelines. Aniline blue was used to assess the maturity of the DNA. Then, the direct-swim-up technique was applied to thawed samples from both groups to select the best sperm quality. RESULTS The cryopreservation process negatively impacts all sperm characteristics in both groups. Sperm DNA integrity decreased. Glutathione addition before freezing decreased sperm chromatin immaturity (SCI) percent compared to the control (22.98 ± 0.83, 20.79 ± 0.56). The post-thaw performance of the swim-up technique resulted in a select sperm population with high progressive motility (p = 0.04) and an improvement in DNA integrity in the treated group versus the control group after thawing. CONCLUSION The DNA integrity in normozoospermic samples was improved by adding 5 mM glutathione before freezing. Performing the swim-up technique after thawing had no effect on sperm quality in asthenozoospermic patients.
Collapse
Affiliation(s)
- Raghad Abd Albari Shimal
- Department of Applied Embryology, High Institute for Infertility Diagnosis and Assisted Reproductive Technologies, Al-Nahrain University, Al-Nahrain, IRQ
| | - Amal Abdulwahid Mohammed
- Department of Applied Embryology, High Institute for Infertility Diagnosis and Assisted Reproductive Technologies, Al-Nahrain University, Al-Nahrain, IRQ
| | - Essraa Mohsen Al-Essawe
- Department of Physiology, High Institute for Infertility Diagnosis and Assisted Reproductive Technologies, Al-Nahrain University, Al-Nahrain, IRQ
| |
Collapse
|
15
|
Ozimic S, Ban-Frangez H, Stimpfel M. Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls. Curr Issues Mol Biol 2023; 45:4716-4734. [PMID: 37367049 DOI: 10.3390/cimb45060300] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques.
Collapse
Affiliation(s)
- Sanja Ozimic
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena Ban-Frangez
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Cryopreservation of Human Spermatozoa: Functional, Molecular and Clinical Aspects. Int J Mol Sci 2023; 24:ijms24054656. [PMID: 36902084 PMCID: PMC10002855 DOI: 10.3390/ijms24054656] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Cryopreservation is an expanding strategy to allow not only fertility preservation for individuals who need such procedures because of gonadotoxic treatments, active duty in dangerous occupations or social reasons and gamete donation for couples where conception is denied, but also for animal breeding and preservation of endangered animal species. Despite the improvement in semen cryopreservation techniques and the worldwide expansion of semen banks, damage to spermatozoa and the consequent impairment of its functions still remain unsolved problems, conditioning the choice of the technique in assisted reproduction procedures. Although many studies have attempted to find solutions to limit sperm damage following cryopreservation and identify possible markers of damage susceptibility, active research in this field is still required in order to optimize the process. Here, we review the available evidence regarding structural, molecular and functional damage occurring in cryopreserved human spermatozoa and the possible strategies to prevent it and optimize the procedures. Finally, we review the results on assisted reproduction technique (ARTs) outcomes following the use of cryopreserved spermatozoa.
Collapse
|
17
|
Sui H, Sheng M, Luo H, Liu G, Meng F, Cao Z, Zhang Y. Characterization of freezability-associated metabolites in boar semen. Theriogenology 2023; 196:88-96. [PMID: 36401936 DOI: 10.1016/j.theriogenology.2022.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Sperm cryopreservation maintains the diversities of porcine genetic resources and improves utilization efficiency of boar semen in artificial insemination practices. Freezability of boar semen presents remarkable differences among individuals. However, metabolic markers for boar semen freezability in both sperm and seminal plasma largely remain unknown. The present study thus aims to determine differences in metabolites of sperm and seminal plasma between poor (PF) and good (GF) freezability semen from a Chinese native pig and screen potential markers for semen freezability. A total of 72,048 metabolites in sperm and 66,551 metabolites in seminal plasma were identified by liquid chromatography-mass spectrometry, respectively. The proportion of lipid molecules among all metabolites in both sperm and seminal plasma was the maximum regardless of negative or positive mode. Furthermore, we identified 21 differentially expressed metabolites (DEMs) in sperm and 185 DEMs in seminal plasma between PF and GF group. Additionally, clustering analysis showed that DEMs in sperm and seminal plasma exhibited significant changes between PF and GF group. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEMs in sperm were mainly enriched in metabolic pathways of amino acids and caffeine. DEMs in seminal plasma were associated with AMPK and cAMP signaling pathways. Taken together, these results demonstrate that sperm and seminal plasma of native pigs present differential metabolome between PF and GF semen.
Collapse
Affiliation(s)
- Heming Sui
- National Animal Husbandry Service, Beijing, 100125, China
| | - Mei Sheng
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Haiqin Luo
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Gang Liu
- National Animal Husbandry Service, Beijing, 100125, China
| | - Fei Meng
- National Animal Husbandry Service, Beijing, 100125, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|