1
|
Ponleitner M, Rommer PS. Treatment of neuromyelitis optica spectrum disorder: revisiting the complement system and other aspects of pathogenesis. Wien Med Wochenschr 2024; 174:4-15. [PMID: 36472724 PMCID: PMC10810999 DOI: 10.1007/s10354-022-00987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/22/2022] [Indexed: 12/12/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) represents a rare neuroimmunological disease causing recurrent attacks and accumulation of permanent disability in affected patients. The discovery of the pathogenic IgG‑1 antibody targeting a water channel expressed in astrocytes, aquaporin 4, constitutes a milestone achievement. Subsequently, multiple pathophysiological aspects of this distinct disease entity have been investigated. Demyelinating lesions and axonal damage ensue from autoantibodies targeting an astroglial epitope. This conundrum has been addressed in the current disease model, where activation of the complement system as well as B cells and interleukin 6 (IL-6) emerged as key contributors. It is the aim of this review to address these factors in light of novel treatment compounds which reflect these pathophysiological concepts in aiming for attack prevention, thus reducing disease burden in patients with NMOSD.
Collapse
Affiliation(s)
- Markus Ponleitner
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Paulus Stefan Rommer
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
2
|
Shen X. Research progress on pathogenesis and clinical treatment of neuromyelitis optica spectrum disorders (NMOSDs). Clin Neurol Neurosurg 2023; 231:107850. [PMID: 37390569 DOI: 10.1016/j.clineuro.2023.107850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/11/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Neuromyelitis optica spectrum disorders (NMOSDs) are characteristically referred to as various central nervous system (CNS)-based inflammatory and astrocytopathic disorders, often manifested by the axonal damage and immune-mediated demyelination targeting optic nerves and the spinal cord. This review article presents a detailed view of the etiology, pathogenesis, and prescribed treatment options for NMOSD therapy. Initially, we present the epidemiology of NMOSDs, highlighting the geographical and ethnical differences in the incidence and prevalence rates of NMOSDs. Further, the etiology and pathogenesis of NMOSDs are emphasized, providing discussions relevant to various genetic, environmental, and immune-related factors. Finally, the applied treatment strategies for curing NMOSD are discussed, exploring the perspectives for developing emergent innovative treatment strategies.
Collapse
Affiliation(s)
- Xinyu Shen
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, PR China.
| |
Collapse
|
3
|
Cutler C, Azab MA, Lucke-Wold B, Khan M, Henson JC, Gill AS, Alt JA, Karsy M. Systematic Review of Treatment Options and Therapeutic Responses for Lesions of the Sella and Orbit: Evidence-Based Recommendations. World Neurosurg 2023; 173:136-145.e30. [PMID: 36639102 DOI: 10.1016/j.wneu.2022.12.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Inflammatory pathologies of the sella and orbit are rare but require prompt diagnosis to initiate effective treatment. Because uniform recommendations for treatment are currently lacking, we performed an evidence-based review to identify recommendations. METHODS We performed a literature search of the PubMed, Embase, and Web of Science databases to identify papers evaluating treatment of inflammatory pathologies of the sella and orbit. We used PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to define recommendations, specifically examining aggregated sample sizes, disease-specific patient follow-up, and clinical trials focused on inflammatory diseases of the sella and orbit. RESULTS A total of 169 studies were included and organized by disease pathology. Treatments for various pathologies were recorded. Treatment options included surgery, radiation, steroids, targeted treatments, immunomodulators, intravenous immune globulin, and plasmapheresis. Steroids were the most often employed treatment, second-line management options and timing varied. Pathological diagnosis was highly associated with treatment used. Most evidence were level 3 without available control groups, except for 13 trials in neuromyelitis optica with level 1 or 2 evidence. CONCLUSIONS This is the first evidence-based review to provide recommendations on specific treatments for pathologies of the orbit and sella. The reported data may be useful to help guide randomized clinical trials and provide resource for clinical management decisions based on the available evidence.
Collapse
Affiliation(s)
- Christopher Cutler
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Mohammed A Azab
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Majid Khan
- Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - J Curran Henson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amarbir S Gill
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Jeremiah A Alt
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
4
|
Tonev DG, Momchilova AB. Therapeutic Plasma Exchange in Certain Immune-Mediated Neurological Disorders: Focus on a Novel Nanomembrane-Based Technology. Biomedicines 2023; 11:328. [PMID: 36830870 PMCID: PMC9953422 DOI: 10.3390/biomedicines11020328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Therapeutic plasma exchange (TPE) is an efficient extracorporeal blood purification technique to remove circulating autoantibodies and other pathogenic substances. Its mechanism of action in immune-mediated neurological disorders includes immediate intravascular reduction of autoantibody concentration, pulsed induction of antibody redistribution, and subsequent immunomodulatory changes. Conventional TPE with 1 to 1.5 total plasma volume (TPV) exchange is a well-established treatment in Guillain-Barre Syndrome, Chronic Inflammatory Demyelinating Polyradiculoneuropathy, Neuromyelitis Optica Spectrum Disorder, Myasthenia Gravis and Multiple Sclerosis. There is insufficient evidence for the efficacy of so-called low volume plasma exchange (LVPE) (<1 TPV exchange) implemented either by the conventional or by a novel nanomembrane-based TPE in these neurological conditions, including their impact on conductivity and neuroregenerative recovery. In this narrative review, we focus on the role of nanomembrane-based technology as an alternative LVPE treatment option in these neurological conditions. Nanomembrane-based technology is a promising type of TPE, which seems to share the basic advantages of the conventional one, but probably with fewer adverse effects. It could play a valuable role in patient management by ameliorating neurological symptoms, improving disability, and reducing oxidative stress in a cost-effective way. Further research is needed to identify which patients benefit most from this novel TPE technology.
Collapse
Affiliation(s)
- Dimitar G. Tonev
- Department of Anesthesiology and Intensive Care, Medical University of Sofia, University Hospital “Tzaritza Yoanna—ISUL”, 1527 Sofia, Bulgaria
| | - Albena B. Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Chatterton S, Parratt JDE, Ng K. Eculizumab for acute relapse of neuromyelitis optica spectrum disorder: Case report. Front Neurol 2022; 13:951423. [PMID: 36003301 PMCID: PMC9393544 DOI: 10.3389/fneur.2022.951423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction Eculizumab has been shown to be an effective and typically well-tolerated medication in the treatment of neuromyelitis optica spectrum disorder (NMOSD) in maintaining disease remission in patients who are aquaporin-4 water channel autoantibody (AQP4-IgG) seropositive. The efficacy of eculizumab in an acute relapse of NMOSD however is still under review. Case We describe a 46 year-old female who presented with acute left monocular vision loss on a background of bilateral optic neuritis treated 15 years prior as suspected NMOSD. She had very poor vision from the right eye (6/60). On presentation she was not on any long-term immunosuppressive agents. Her serum was positive for AQP4-IgG and MRI brain and spine demonstrated areas of demyelination in the corpus callosum and thoracic spine. She was treated with high dose intravenous methylprednisolone and underwent plasmapheresis for five consecutive days, but continued to clinically deteriorate with ongoing blindness in her left eye (light perception only). She was subsequently administered eculizumab with weaning oral corticosteroids. Clinically her vision improved to counting fingers and she remains on maintenance eculizumab infusions in the community. At 3 months, there is a steady improvement but still significant loss of central vision from that eye. Conclusion The utility of eculizumab in NMOSD may assist with treating acute episodes. This theoretically accords with the mode of action in inhibiting conversion of C5–C5a/b, perhaps arresting the acute inflammatory process in this disease. Given that disease burden and mortality in NMOSD is almost entirely related to relapses, increased use of eculizumab acutely could potentially aid recovery from an attack in very severe attacks, and therefore minimize immediate stepwise accrual of disability.
Collapse
Affiliation(s)
- Sophie Chatterton
- Department of Neurology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - John Douglas Edward Parratt
- Department of Neurology, Royal North Shore Hospital, Sydney, NSW, Australia
- School of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Karl Ng
- Department of Neurology, Royal North Shore Hospital, Sydney, NSW, Australia
- School of Medicine, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Karl Ng
| |
Collapse
|
6
|
Shi M, Chu F, Jin T, Zhu J. Progress in treatment of neuromyelitis optica spectrum disorders (NMOSD): Novel insights into therapeutic possibilities in NMOSD. CNS Neurosci Ther 2022; 28:981-991. [PMID: 35426485 PMCID: PMC9160456 DOI: 10.1111/cns.13836] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune inflammatory demyelinating disorder of the central nervous system (CNS), which is a severely disabling disorder leading to devastating sequelae or even death. Repeated acute attacks and the presence of aquaporin-4 immunoglobulin G (AQP4-IgG) antibody are the typical characteristics of NMOSD. Recently, the phase III trials of the newly developed biologicals therapies have shown their effectiveness and good tolerance to a certain extent when compared with the traditional therapy with the first- and second-line drugs. However, there is still a lack of large sample, double-blind, randomized, clinical studies to confirm their efficacy, safety, and tolerability. Especially, these drugs have no clear effect on NMOSD patients without AQP4-IgG and refractory patients. Therefore, it is of strong demand to further conduct large sample, double-blind, randomized, clinical trials, and novel therapeutic possibilities in NMOSD are discussed briefly here.
Collapse
Affiliation(s)
- Mingchao Shi
- Neuroscience CenterDepartment of NeurologyThe First Hospital of Jilin UniversityChangchunChina
- Department of Neurobiology, Care Sciences & SocietyDivision of NeurogeriatrcsKarolinska InstitutetKarolinska University Hospital SolnaStockholmSweden
| | - Fengna Chu
- Neuroscience CenterDepartment of NeurologyThe First Hospital of Jilin UniversityChangchunChina
- Department of Neurobiology, Care Sciences & SocietyDivision of NeurogeriatrcsKarolinska InstitutetKarolinska University Hospital SolnaStockholmSweden
| | - Tao Jin
- Neuroscience CenterDepartment of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Jie Zhu
- Neuroscience CenterDepartment of NeurologyThe First Hospital of Jilin UniversityChangchunChina
- Department of Neurobiology, Care Sciences & SocietyDivision of NeurogeriatrcsKarolinska InstitutetKarolinska University Hospital SolnaStockholmSweden
| |
Collapse
|
7
|
Liu C, Shi M, Zhu M, Chu F, Jin T, Zhu J. Comparisons of clinical phenotype, radiological and laboratory features, and therapy of neuromyelitis optica spectrum disorder by regions: update and challenges. Autoimmun Rev 2021; 21:102921. [PMID: 34384938 DOI: 10.1016/j.autrev.2021.102921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease of the central nervous system (CNS) associated with autoantibody (ab) to aquaporin-4 (AQP4). There is obvious variation between regions and countries in the epidemiology, clinical features and management in NMOSD. Based on published population-based observation and cohort studies, the different clinical pattern of NMOSD has been seen in several geographical regions and some of these patients with NMOSD-like features do not fully meet the current diagnostic criteria, which is needed to consider the value of recently revised diagnostic criteria. At present, all treatments applied in NMOSD have made great progress, however, these treatments failed in AQP4 ab negative and refractory patients. Therefore, it is necessary to turn into an innovative idea and to open a new era of NMOSD treatment to develop novel and diverse targets and effective therapeutic drugs in NMOSD and to conduct the trails in large clinical samples and case-control studies to confirm their therapeutic effects on NMOSD in the future, which still remain a challenge.
Collapse
Affiliation(s)
- Caiyun Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Mingchao Shi
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Mingqin Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Tao Jin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
8
|
Therapeutic apheresis within immune-mediated neurological disorders: dosing and its effectiveness. Sci Rep 2020; 10:7925. [PMID: 32404917 PMCID: PMC7220931 DOI: 10.1038/s41598-020-64744-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
Plasma exchange (PE) and immunoadsorption (IA) are standard therapeutic options of immune-mediated neurological disorders. This study evaluates the relation of the relative quantity of applied dose of PE and/ or IA and its achieved therapeutic effectiveness within the treated underlying neurological disorders. In a retrospective study, we evaluated data from PE and IA carried out 09/2009-06/2014 in neurological patients at the University-Hospital of Saarland, Germany. Apheresis dose was defined as the ratio of the extracorporeal treated plasma volume to the patient's plasma volume. Effectiveness was assessed through disease-specific tests and scores by the attending neurologist(s); results were classified into response or no response. 1101 apheresis (PE:238, IA:863), in 153 hospital-stays were carried out, averaged, 7.0 treatments per patients, 82% responded, 18% not. Mean applied apheresis dose per treatment was 0.91 with mean doses of 1.16 for PE and 0.81 for IA. The totally applied mean dose per stay was 5.6 (PE:5.01, IA:5.81). No correlation was seen between apheresis dosing and treatment effectiveness (PE:R2 = 0.074, IA:R2 = 0.0023). PE and IA in therapy-refractory immune-mediated neurological disorders majorly achieved a measurable severity improvement - without correlation to the applied dose. Moreover, our data rather suggest, that effectiveness may be given with volumes below currently recommended volumes.
Collapse
|
9
|
Kumawat BL, Choudhary R, Sharma CM, Jain D, Hiremath A. Plasma Exchange as a First Line Therapy in Acute Attacks of Neuromyelitis Optica Spectrum Disorders. Ann Indian Acad Neurol 2019; 22:389-394. [PMID: 31736557 PMCID: PMC6839304 DOI: 10.4103/aian.aian_365_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Aims: Neuromyelitis optica spectrum disorder (NMOSD) is a demyelinating disorder of central nervous system with deleterious effects. At present Intravenous corticosteroids are used for the relapse as the first line of treatment, but with only a class evidence III-IV. Having an underlying humoral immune mechanism in the pathogenesis of NMOSD and as it is rightly said that “Time is Cord and Eyes”, delaying the time to start plasma exchange (PLEX) awaiting favorable outcome in response to corticosteroids is detrimental for the patient. Hence, PLEX may be a promising first line therapeutic approach in the management of severe attacks of NMOSD. The aim of this study is to evaluate the efficacy of PLEX as the first line of treatment for the acute attacks in patients with NMOSD that is being largely used as an add-on therapy for more than 10 years, and also to define the time opportunity window for the starting of PLEX. Methods: The study analysed the therapeutic efficacy and safety profile of PLEX as a first line therapy in 30 patients diagnosed with NMOSD over a period of 30 months. PLEX was performed using a Hemonetics Mobile Collection System plus machine with due written consent including the risks and benefits of the treatment that is being proposed to the patient/relative in their own language. Results: A total of 30 patients were analysed, out of which 16 were females and rest males. 85% of the patients were in the age group of 25-35 years. All the patients had severe Expanded Disability Status Scale (EDSS) scores at the baseline, and 73.33% showed significant improvement following PLEX. The only predictor of good outcome was the time to PLEX i.e shorter delay betters the outcome. Conclusion: The study ascertained the importance of early PLEX as a therapeutic intervention in severe attacks of NMOSD irrespective of their Anti-Aquaporin 4 (AQP4) antibody status.
Collapse
Affiliation(s)
- B L Kumawat
- Department of Neurology, SMS Medical College, Jaipur, Rajeshthan, India
| | - Reenu Choudhary
- Department of Neurology, SMS Medical College, Jaipur, Rajeshthan, India
| | - C M Sharma
- Department of Neurology, SMS Medical College, Jaipur, Rajeshthan, India
| | - Deepak Jain
- Department of Neurology, SMS Medical College, Jaipur, Rajeshthan, India
| | - Ashwini Hiremath
- Department of Neurology, SMS Medical College, Jaipur, Rajeshthan, India
| |
Collapse
|
10
|
Wu Y, Zhong L, Geng J. Neuromyelitis optica spectrum disorder: Pathogenesis, treatment, and experimental models. Mult Scler Relat Disord 2018; 27:412-418. [PMID: 30530071 DOI: 10.1016/j.msard.2018.12.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/21/2018] [Accepted: 12/02/2018] [Indexed: 01/10/2023]
Abstract
Neuromyelitis optica (NMO) and NMO spectrum disorder (NMOSD) are inflammatory CNS syndromes mainly involving the optic nerve and/or spinal cord and characterized by the presence of serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG). The pathology of NMOSD is complicated, while therapies for NMOSD are limited and only partially effective in most cases. This review article focuses on the main pathology of NMOSD involving AQP4-IgG and lymphocyte function. We also review the existing therapeutic methods and potential new treatments. Experimental NMO animal models are crucial for further research into NMO pathology and treatment. However, no AQP4-IgG-immunized animals have been reported. The establishment of NMO models is therefore difficult and primarily depends on the generation of transgenic mice or transcranial manipulation using human or monoclonal mouse anti-AQP4 antibodies. Advantages and disadvantages of each model are discussed.
Collapse
Key Words
- APC, antigen-presenting cell
- Abbreviations: ADCC, antibody-dependent cellular cytotoxicity
- Aqp4, aquaporin 4
- Aquaporin-4
- BAFF, b-cell activating factor
- BBB, blood-brain barrier
- BCR, b cell receptor
- CDD, complement-dependent cytotoxicity
- CFA, complete freund's adjuvant
- CSF, cerebrospinal fluid
- CXCL, c-x-c motif chemokine ligand
- EAE, experimental autoimmune encephalomyelitis
- ECD, extracellular domain
- Experimental animal models
- IGG, immunoglobulin g
- IVMP, methylprednisolone pulse
- LETM, longitudinally extensive transverse myelitis
- MAB, monoclonal antibody
- MBP, myelin-binding protein
- MOG, myelin oligodendrocyte glycoprotein
- MOG-Ab, anti-MOG antibody
- NF-H, neurofilament heavy chain
- NMO, neuromyelitis optica
- NMO-IgG, NMO with serum AQP4-IgG
- NMOSD, NMO spectrum disorder
- Neuromyelitis optica
- Neuromyelitis optica spectrum disorder
- PB, plasmablast
- PP, plasmapheresis
- Remyelination
Collapse
Affiliation(s)
- Yan Wu
- Department of Neurology, Xichang Road No.295, Kunming 650000, China.
| | - Lianmei Zhong
- Department of Neurology, Xichang Road No.295, Kunming 650000, China
| | - Jia Geng
- Department of Neurology, Xichang Road No.295, Kunming 650000, China
| |
Collapse
|