Effects of Temoporfin-Based Photodynamic Therapy on the In Vitro Antibacterial Activity and Biocompatibility of Gelatin-Hyaluronic Acid Cross-Linked Hydrogel Membranes.
Pharmaceutics 2022;
14:pharmaceutics14112314. [PMID:
36365133 PMCID:
PMC9699569 DOI:
10.3390/pharmaceutics14112314]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
This study was performed to design a hydrogel membrane that exhibits antibacterial properties and guides different tissues. Gelatin and hyaluronic acid were used as the main structures, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) was used as a cross-linker, and temoporfin was used as an antibacterial agent. The results revealed that the hydrogel membrane impregnated with temoporfin (HM-T) had a fixation index of >89%. Temoporfin was used in conjunction with a diode laser and did not significantly affect EDC-induced cross-linking. The inhibitory activity of temoporfin showed that HM-T15 and HM-T30 (light exposure for 15 and 30 min, respectively) had remarkable antibacterial properties. The cell survival rate of HM-T15 was 73% of that of the control group, indicating that temoporfin exposure for 15 min did not exert cytotoxic effects on L-929 cells. HM and HM-T15 hydrogel membranes showed good cell adhesion and proliferation after 14 days of dark incubation. However, the hydrogel membrane containing temoporfin significantly reduced pro-inflammatory gene expression. In summary, the HM-T15 group showed potential as a biodegradable material for biocompatible tissue-guarded regeneration membranes with antibacterial properties. This study demonstrated the potential of temoporfin for innovative biomaterials and delivery systems applied to new regenerative periodontal therapies.
Collapse