1
|
Tong Y, Lee H, Kohls W, Han Z, Duan H, Cheng Z, Li F, Gao J, Liu J, Geng X, Ding Y. Remote ischemic conditioning (RIC) with exercise (RICE) is safe and feasible for acute ischemic stroke (AIS) patients. Front Neurol 2022; 13:981498. [PMID: 36457864 PMCID: PMC9706098 DOI: 10.3389/fneur.2022.981498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE Rehabilitation is essential in reducing stroke disability and should be performed as early as possible. Exercise is an established and effective rehabilitation method; however, its implementation has been limited as its very early use exacerbates cerebral injury and is restricted by patients' unstable conditions and disabilities. Remote ischemic conditioning (RIC) is a passive and accessible therapy in acute phases of stroke and appears to have similar neuroprotective effects as exercise. This study assessed the safety and feasibility of the novel rehabilitation strategy-early RIC followed by exercise (RICE) in acute ischemic stroke (AIS). METHODS We conducted a single-center, double-blinded, randomized controlled trial with AIS patients within 24 h of stroke onset or symptom exacerbation. All enrolled patients were randomly assigned, at a ratio of 1:1, to either the RICE group or the sham-RICE group (sham RIC with exercise). Each group received either RIC or sham RIC within 24 h after stroke onset or symptom exacerbation, once a day, for 14 days. Both groups started the exercise routine on day 4, twice daily, for 11 total days. The safety endpoints included clinical deterioration, recurrence of stroke, hemorrhagic transformation, complications, and adverse events resulting from RICE during hospitalization. The efficacy endpoints [Modified Rankin Scale (mRS) score, National Institutes of Health Stroke Scale (NIHSS) score, Barthel Index, and walking ability] were evaluated at admission and 90 days after stroke onset. RESULTS Forty AIS patients were recruited and completed the study. No significant differences in baseline characteristics were found between the two groups, which included risk factors, stroke severity at admission, pre-morbid disability, and other special treatments. No significant differences were found in the safety endpoints between two groups. Excellent recovery (mRS 0-2) at 3 months was obtained in 55% of the patients with RICE as compared 40% in sham group, but it did not reach a significant level. CONCLUSIONS RICE was safe and feasible for AIS patients, and seems to be a promising early stroke rehabilitation. The results of this study suggest a need for a future randomized and controlled multicenter trial with a larger sample size to determine the efficacy of RICE.
Collapse
Affiliation(s)
- Yanna Tong
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Wesley Kohls
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zhenzhen Han
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Honglian Duan
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhe Cheng
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Fenghai Li
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jie Gao
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jing Liu
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
2
|
Sangeetha R, Ramesh V, Kamath S, Chakrabarti D, Christopher R, Aravinda H, Bhat D. Effect of remote ischemic preconditioning on cerebral oxygen saturation in aneurysmal subarachnoid hemorrhage: Secondary analysis of a randomized controlled trial. J Clin Neurosci 2022; 98:78-82. [DOI: 10.1016/j.jocn.2022.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
|
3
|
Wang Q, Wills M, Li F, Geng X, Ding Y. Remote ischemic conditioning with exercise (RICE) promotes functional rehabilitation following ischemic stroke. Neurol Res 2021; 43:874-883. [PMID: 34151756 DOI: 10.1080/01616412.2021.1939489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: Exercise is an essential rehabilitative strategy after stroke butits implementation is limited as its very early use can exacerbate damage and is restricted by patient disability. Remote Ischemic Conditioning (RIC) is a safe alternative for post-stroke neuroprotetion. The present study investigated the neurorehabilitative benefits of early RIC followed by exercise (RICE) therapy.Methods: 48 adult male Sprague-Dawley rats were divided into groups: 1) sham, 2) stroke, 3) stroke with RICE at day 3 (RIC 6 hours after reperfusion followed by exercise days 3 to 28), 4) stroke with exercise at day 3 (exercise days 3 to 28), and 5) stroke with RICE at day 1 (RIC 6 hours after reperfusion followed by exercise days 1 to 28), 6) stroke with exercise at day 1 (exercise days 1 to 28 after reperfusion). Long-term functional outcomes were determined by grid walk, rota-rod, adhesive tape touch, and Morris water maze. Levels of mRNA and proteins of neuroplasticity, synaptogenesis, and angiogenesis, were determined.Results: As compared to exercise only, animals that underwent RICE had significant improvements in functional outcomes after stroke. These improvements were most significant in groups that had the later initiation of exercise. In addition, all treatment groups showed significant increases in mRNA and protein expression of the target molecules for neuroplasticity, synaptogenesis, and angiogenesis, while further significant increases were observed after RICE following ischemic stroke.Conclusions: RICE, a novel therapy that supplements RIC prior to exercise, is superiorly effective in inducing rehabilitation after stroke as compared to the traditional exercise monotherapy rehabilitation in rats with ischemic brain injury.
Collapse
Affiliation(s)
- Qingzhu Wang
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fengwu Li
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
4
|
Sangeetha RP, Venkatapura RJ, Kamath S, Christopher R, Bhat DI, Arvinda HR, Chakrabarti D. Effect of remote ischemic preconditioning on cerebral vasospasm, biomarkers of cerebral ischemia, and functional outcomes in aneurysmal subarachnoid hemorrhage (ERVAS): A randomized controlled pilot trial. Brain Circ 2021; 7:104-110. [PMID: 34189353 PMCID: PMC8191538 DOI: 10.4103/bc.bc_13_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Cerebral vasospasm can complicate aneurysmal subarachnoid hemorrhage (aSAH), contributing to cerebral ischemia. We explored the role of remote ischemic preconditioning (RIPC) in reducing cerebral vasospasm and ischemia and improving outcomes after aSAH. MATERIALS AND METHODS: Patients with ruptured cerebral aneurysm undergoing surgical clipping and meeting the trial criteria were randomized to true RIPC (n = 13) (inflating upper extremity blood pressure cuff thrice to 30 mmHg above systolic pressure for 5 min) or sham RIPC (n = 12) (inflating blood pressure cuff thrice to 30 mmHg for 5 min) after ethical approval. A blinded observer assessed outcome measures-cerebral vasospasm and biomarkers of cerebral ischemia. We also evaluated the feasibility and safety of RIPC in aSAH and Glasgow Outcome Scale-Extended (GOSE). RESULTS: Angiographic vasospasm was seen in 9/13 (69%) patients; 1/4 patients (25%) in true RIPC group, and 8/9 patients (89%) in sham RIPC group (P = 0.05). Vasospasm on transcranial Doppler study was diagnosed in 5/25 (20%) patients and 1/13 patients (7.7%) in true RIPC and 4/12 patients (33.3%) in sham RIPC group, (P = 0.16). There was no difference in S100B and neuron-specific enolase (NSE) levels over various time-points within groups (P = 0.32 and 0.49 for S100B, P = 0.66 and 0.17 for NSE in true and sham groups, respectively) and between groups (P = 0.56 for S100B and P = 0.31 for NSE). Higher GOSE scores were observed with true RIPC (P = 0.009) unlike sham RIPC (P = 0.847) over 6-month follow-up with significant between group difference (P = 0.003). No side effects were seen with RIPC. CONCLUSIONS: RIPC is feasible and safe in patients with aSAH and results in a lower incidence of vasospasm and better functional outcome.
Collapse
Affiliation(s)
- R P Sangeetha
- Department of Neuroanesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ramesh J Venkatapura
- Department of Neuroanesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sriganesh Kamath
- Department of Neuroanesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | | | - H R Arvinda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Dhritiman Chakrabarti
- Department of Neuroanesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Wang Q, Wills M, Han Z, Geng X, Ding Y. Mini Review (Part I): An Experimental Concept on Exercise and Ischemic Conditioning in Stroke Rehabilitation. Brain Circ 2021; 6:242-247. [PMID: 33506146 PMCID: PMC7821806 DOI: 10.4103/bc.bc_63_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Stroke remains a leading cause of adult death and disability. Poststroke rehabilitation is vital for reducing the long-term sequelae of brain ischemia. Recently, physical exercise training has been well established as an effective rehabilitation tool, but its efficacy depends on exercise parameters and the patient's capacities, which are often altered following a major cerebrovascular event. Thus, ischemic conditioning as a rehabilitation intervention was considered an “exercise equivalent,” but the investigation is still in its relative infancy. In this mini-review, we discuss the potential for physical exercise or ischemic conditioning and its relation to angiogenesis, neurogenesis, and plasticity in stroke rehabilitation. This allows the readers to understand the context of the research and the application of ischemic conditioning in poststroke rehabilitation.
Collapse
Affiliation(s)
- Qingzhu Wang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhenzhen Han
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, Michigan, USA
| |
Collapse
|
6
|
Remote ischemic postconditioning attenuates damage in rats with chronic cerebral ischemia by upregulating the autophagolysosome pathway via the activation of TFEB. Exp Mol Pathol 2020; 115:104475. [PMID: 32473154 DOI: 10.1016/j.yexmp.2020.104475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 11/23/2022]
Abstract
The transcription factor EB (TFEB) is known for its role in lysosomal biogenesis, and it coordinates this process by driving autophagy and lysosomal gene expression during ischemia. In the present study, we aimed to explore the role of the TFEB-regulated autophagolysosome pathway (ALP) in rats with chronic cerebral ischemia (CCI) that were treated with remote ischemic postconditioning (RIPC). A modified 2-vessel occlusion (2-VO) method was utilized to establish the CCI rat model, and the CCI rats were identified by the Morris water maze test and histological staining. After the CCI rats were treated with RIPC, the damage to the rat cortex and hippocampal tissues and the status of the ALP were determined. Western blot analysis and immunofluorescence assays were performed to observe the nuclear translocation of TFEB. The rats were injected with TFEB siRNA via the lateral ventricle to investigate the effect of TFEB siRNA on the RIPC-treated CCI rats. The results suggested that RIPC of the CCI rats alleviated nerve injury, induced TFEB translocation into the nucleus, upregulated autophagy-related protein expression, and activated ALP machinery. Furthermore, TFEB siRNA decreased the levels of TFEB and impaired the neuroprotective effects of RIPC on the CCI rats. Collectively, we highlighted that RIPC attenuates damage in CCI rats via the activation of the TFEB-mediated ALP.
Collapse
|