1
|
Díaz-Peregrino R, Kentar M, Trenado C, Sánchez-Porras R, Albiña-Palmarola P, Ramírez-Cuapio FL, San-Juan D, Unterberg A, Woitzik J, Santos E. The neurophysiological effect of mild hypothermia in gyrencephalic brains submitted to ischemic stroke and spreading depolarizations. Front Neurosci 2024; 18:1302767. [PMID: 38567280 PMCID: PMC10986791 DOI: 10.3389/fnins.2024.1302767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Objective Characterize the neurophysiological effects of mild hypothermia on stroke and spreading depolarizations (SDs) in gyrencephalic brains. Methods Left middle cerebral arteries (MCAs) of six hypothermic and six normothermic pigs were permanently occluded (MCAo). Hypothermia began 1 h after MCAo and continued throughout the experiment. ECoG signals from both frontoparietal cortices were recorded. Five-minute ECoG epochs were collected 5 min before, at 5 min, 4, 8, 12, and 16 h after MCAo, and before, during, and after SDs. Power spectra were decomposed into fast (alpha, beta, and gamma) and slow (delta and theta) frequency bands. Results In the vascular insulted hemisphere under normothermia, electrodes near the ischemic core exhibited power decay across all frequency bands at 5 min and the 4th hour after MCAo. The same pattern was registered in the two furthest electrodes at the 12th and 16th hour. When mild hypothermia was applied in the vascular insulted hemispheres, the power decay was generalized and seen even in electrodes with uncompromised blood flow. During SD analysis, hypothermia maintained increased delta and beta power during the three phases of SDs in the furthest electrode from the ischemic core, followed by the second furthest and third electrode in the beta band during preSD and postSD segments. However, in hypothermic conditions, the third electrode showed lower delta, theta, and alpha power. Conclusion Mild hypothermia attenuates all frequency bands in the vascularly compromised hemisphere, irrespective of the cortical location. During SD formation, it preserves power spectra more significantly in electrodes further from the ischemic core.
Collapse
Affiliation(s)
- Roberto Díaz-Peregrino
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Modar Kentar
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Departement of Neurosurgery, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| | - Carlos Trenado
- Heinrich Heine University, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Düsseldorf, Germany
- Institute for the Future of Education Europe, Tecnológico de Monterrey, Cantabria, Spain
| | - Renán Sánchez-Porras
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Pablo Albiña-Palmarola
- Neuroradiologische Klinik, Klinikum Stuttgart, Stuttgart, Germany
- Medizinische Fakultät, Universität Duisburg-Essen, Essen, Germany
- Department of Anatomy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco L. Ramírez-Cuapio
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Daniel San-Juan
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Edgar Santos
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Kentar M, Ramirez-Cuapio FL, Gutiérrez-Herrera MA, Sanchez-Porras R, Díaz-Peregrino R, Holzwarth N, Maier-Hein L, Woitzik J, Santos E. Mild hypothermia reduces spreading depolarizations and infarct size in a swine model. J Cereb Blood Flow Metab 2023; 43:999-1009. [PMID: 36722153 PMCID: PMC10196741 DOI: 10.1177/0271678x231154604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 02/02/2023]
Abstract
Spreading depolarizations (SDs) have been linked to infarct volume expansion following ischemic stroke. Therapeutic hypothermia provides a neuroprotective effect after ischemic stroke. This study aimed to evaluate the effect of hypothermia on the propagation of SDs and infarct volume in an ischemic swine model. Through left orbital exenteration, middle cerebral arteries were surgically occluded (MCAo) in 16 swine. Extensive craniotomy and durotomy were performed. Six hypothermic and five normothermic animals were included in the analysis. An intracranial temperature probe was placed right frontal subdural. One hour after ischemic onset, mild hypothermia was induced and eighteen hours of electrocorticographic (ECoG) and intrinsic optical signal (IOS) recordings were acquired. Postmortem, 4 mm-thick slices were stained with 2,3,5-triphenyltetrazolium chloride to estimate the infarct volume. Compared to normothermia (36.4 ± 0.4°C), hypothermia (32.3 ± 0.2°C) significantly reduced the frequency and expansion of SDs (ECoG: 3.5 ± 2.1, 73.2 ± 5.2% vs. 1.0 ± 0.7, 41.9 ± 21.8%; IOS 3.9 ± 0.4, 87.6 ± 12.0% vs. 1.4 ± 0.7, 67.7 ± 8.3%, respectively). Further, infarct volume among hypothermic animals (23.2 ± 1.8% vs. 32.4 ± 2.5%) was significantly reduced. Therapeutic hypothermia reduces infarct volume and the frequency and expansion of SDs following cerebral ischemia.
Collapse
Affiliation(s)
- Modar Kentar
- Department of Neurosurgery,
University of Heidelberg, Heidelberg, Germany
| | | | | | - Renan Sanchez-Porras
- Department of Neurosurgery,
Evangelisches Krankenhaus Oldenburg, Carl von Ossietzky University of Oldenburg,
Oldenburg, Germany
| | | | - Niklas Holzwarth
- Division of Intelligent Medical
Systems, German Cancer Research Center, Heidelberg, Germany
| | - Lena Maier-Hein
- Division of Intelligent Medical
Systems, German Cancer Research Center, Heidelberg, Germany
| | - Johannes Woitzik
- Department of Neurosurgery,
Evangelisches Krankenhaus Oldenburg, Carl von Ossietzky University of Oldenburg,
Oldenburg, Germany
| | - Edgar Santos
- Department of Neurosurgery,
University of Heidelberg, Heidelberg, Germany
- Department of Neurosurgery,
Evangelisches Krankenhaus Oldenburg, Carl von Ossietzky University of Oldenburg,
Oldenburg, Germany
| |
Collapse
|
3
|
Chen X, An H, Wu D, Ji X. Research progress of selective brain cooling methods in the prehospital care for stroke patients: A narrative review. Brain Circ 2023; 9:16-20. [PMID: 37151794 PMCID: PMC10158655 DOI: 10.4103/bc.bc_88_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 05/09/2023] Open
Abstract
Over the past four decades, therapeutic hypothermia (TH) has long been suggested as a promising neuroprotective treatment of acute ischemic stroke (AIS). Much attention has focus on keeping the hypothermic benefits and removing side effects of systemic hypothermia. In the past few years, the advent of intravenous thrombolysis and endovascular thrombectomy has taken us into a reperfusion era of AIS treatment. With recent research emphasizing ways to plus neuroprotective treatments to reperfusion therapy, the spotlight is now shifting toward the study of how selective brain hypothermia can offset the drawbacks of systemic hypothermia and be applied in prehospital condition. This mini-review summarizes current brain cooling methods that can be used for inducing selective hypothermia in prehospital care. It will guide the future development of selective cooling methods, extend the application of TH in prehospital care, and provide insights into the prospects of selective hypothermia in AIS.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hong An
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Address for correspondence: Dr. Xunming Ji, Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China. E-mail:
| |
Collapse
|
4
|
Liu L, Liu J, Li M, Lyu J, Su W, Feng S, Ji X. Selective brain hypothermia attenuates focal cerebral ischemic injury and improves long-term neurological outcome in aged female mice. CNS Neurosci Ther 2022; 29:129-139. [PMID: 36341958 PMCID: PMC9804044 DOI: 10.1111/cns.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
AIMS This study aimed to investigate the effects of mild selective brain hypothermia on aged female ischemic mice. METHODS A distal middle cerebral artery occlusion (dMCAO) model was established in aged female mice, who were then subjected to mild selective brain hypothermia immediately after the dMCAO procedure. Neurological behavioral examinations were conducted prior to and up to 35 days post-ischemia. Infarct volume, brain atrophy, pro-inflammation, and anti-inflammation microglia/macrophages phenotype and white matter injury were evaluated by immunofluorescence staining. Correlations between neurological behaviors and histological parameters were evaluated by Pearson product linear regression analysis. RESULTS Sensorimotor and cognitive function tests confirmed the protective effect of mild selective brain hypothermia in elderly female ischemic mice. In addition, hypothermia decreased the infarct volume and brain atrophy induced by focal cerebral ischemia. Furthermore, hypothermia alleviated ischemia-induced short-term and long-term white matter injury, which was correlated with behavioral deficits. Finally, hypothermia suppressed the harmful immunological response by promoting the transformation of pro-inflammatory microglia/macrophages to anti-inflammatory phenotype. This polarization was negatively correlated with neuronal loss and white matter injury. CONCLUSION Mild selective brain hypothermia promoted long-term functional recovery by alleviating white matter damage in an aged female mouse model of ischemia.
Collapse
Affiliation(s)
- Liqiang Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Ming Li
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Junxuan Lyu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Wei Su
- Department of Neurosurgery, Beijing Tsing Hua Chang Gung Hospital, School of Clinical MedicineTsing Hua UniversityBeijingChina
| | - Shejun Feng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina,Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
The utility of therapeutic hypothermia on cerebral autoregulation. JOURNAL OF INTENSIVE MEDICINE 2022; 3:27-37. [PMID: 36789361 PMCID: PMC9924009 DOI: 10.1016/j.jointm.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022]
Abstract
Cerebral autoregulation (CA) dysfunction is a strong predictor of clinical outcome in patients with acute brain injury (ABI). CA dysfunction is a potential pathologic defect that may lead to secondary injury and worse functional outcomes. Early therapeutic hypothermia (TH) in patients with ABI is controversial. Many factors, including patient selection, timing, treatment depth, duration, and rewarming strategy, impact its clinical efficacy. Therefore, optimizing the benefit of TH is an important issue. This paper reviews the state of current research on the impact of TH on CA function, which may provide the basis and direction for CA-oriented target temperature management.
Collapse
|
6
|
Neuroprotective Effects of Pharmacological Hypothermia on Hyperglycolysis and Gluconeogenesis in Rats after Ischemic Stroke. Biomolecules 2022; 12:biom12060851. [PMID: 35740974 PMCID: PMC9220898 DOI: 10.3390/biom12060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/26/2022] Open
Abstract
Stroke is a leading threat to human life. Metabolic dysfunction of glucose may play a key role in stroke pathophysiology. Pharmacological hypothermia (PH) is a potential neuroprotective strategy for stroke, in which the temperature is decreased safely. The present study determined whether neuroprotective PH with chlorpromazine and promethazine (C + P), plus dihydrocapsaicin (DHC) improved glucose metabolism in acute ischemic stroke. A total of 208 adult male Sprague Dawley rats were randomly divided into the following groups: sham, stroke, and stroke with various treatments including C + P, DHC, C + P + DHC, phloretin (glucose transporter (GLUT)-1 inhibitor), cytochalasin B (GLUT-3 inhibitor), TZD (thiazolidinedione, phosphoenolpyruvate carboxykinase (PCK) inhibitor), and apocynin (nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor). Stroke was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 6 or 24 h of reperfusion. Rectal temperature was monitored before, during, and after PH. Infarct volume and neurological deficits were measured to assess the neuroprotective effects. Reactive oxygen species (ROS), NOX activity, lactate, apoptotic cell death, glucose, and ATP levels were measured. Protein expression of GLUT-1, GLUT-3, phosphofructokinase (PFK), lactate dehydrogenase (LDH), PCK1, PCK2, and NOX subunit gp91 was measured with Western blotting. PH with a combination of C + P and DHC induced faster, longer, and deeper hypothermia, as compared to each alone. PH significantly improved every measured outcome as compared to stroke and monotherapy. PH reduced brain infarction, neurological deficits, protein levels of glycolytic enzymes (GLUT-1, GLUT-3, PFK and LDH), gluconeogenic enzymes (PCK1 and PCK2), NOX activity and its subunit gp91, ROS, apoptotic cell death, glucose, and lactate, while raising ATP levels. In conclusion, stroke impaired glucose metabolism by enhancing hyperglycolysis and gluconeogenesis, which led to ischemic injury, all of which were reversed by PH induced by a combination of C + P and DHC.
Collapse
|
7
|
Wang X, Wehbe A, Kaura S, Chaudhry N, Geng X, Ding Y. Updates on Selective Brain Hypothermia: Studies From Bench Work to Clinical Trials. Front Neurol 2022; 13:899547. [PMID: 35599727 PMCID: PMC9120368 DOI: 10.3389/fneur.2022.899547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Abstract
Thrombectomy or thrombolysis are the current standards of care for acute ischemic stroke (AIS), however, due to time constraints regarding operations and a multitude of contraindications, AIS remains one of the leading causes of death and chronic disability worldwide. In recent years, therapeutic hypothermia has been explored as an adjuvant therapy for AIS treatment and has shown potential to improve outcomes in patients with AIS. In particular, selective therapeutic hypothermia has shown to markedly reduce infarct volumes and have neuroprotective effects, while also minimizing many systemic side effects seen with systemic therapeutic hypothermia. Both preclinical and clinical trials have demonstrated that selective therapeutic hypothermia is a safe and feasible therapy for patients who have suffered an AIS. In this review, we summarize the current update on selective hypothermia through major studies that have been conducted in rodents, large animals, and clinical trials, and briefly discuss the prospects of selective hypothermic research. We hope this review helps facilitate the exploration of other possible adjuvant treatment modalities in the neuroprotection of ischemic stroke, whether upon symptom onset or after vascular recanalization.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Shawn Kaura
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA, United States
| | - Naveed Chaudhry
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA, United States
| | - Xiaokun Geng
- Department of Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Xiaokun Geng
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- Yuchuan Ding
| |
Collapse
|
8
|
Bertile F, Habold C, Le Maho Y, Giroud S. Body Protein Sparing in Hibernators: A Source for Biomedical Innovation. Front Physiol 2021; 12:634953. [PMID: 33679446 PMCID: PMC7930392 DOI: 10.3389/fphys.2021.634953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Proteins are not only the major structural components of living cells but also ensure essential physiological functions within the organism. Any change in protein abundance and/or structure is at risk for the proper body functioning and/or survival of organisms. Death following starvation is attributed to a loss of about half of total body proteins, and body protein loss induced by muscle disuse is responsible for major metabolic disorders in immobilized patients, and sedentary or elderly people. Basic knowledge of the molecular and cellular mechanisms that control proteostasis is continuously growing. Yet, finding and developing efficient treatments to limit body/muscle protein loss in humans remain a medical challenge, physical exercise and nutritional programs managing to only partially compensate for it. This is notably a major challenge for the treatment of obesity, where therapies should promote fat loss while preserving body proteins. In this context, hibernating species preserve their lean body mass, including muscles, despite total physical inactivity and low energy consumption during torpor, a state of drastic reduction in metabolic rate associated with a more or less pronounced hypothermia. The present review introduces metabolic, physiological, and behavioral adaptations, e.g., energetics, body temperature, and nutrition, of the torpor or hibernation phenotype from small to large mammals. Hibernating strategies could be linked to allometry aspects, the need for periodic rewarming from torpor, and/or the ability of animals to fast for more or less time, thus determining the capacity of individuals to save proteins. Both fat- and food-storing hibernators rely mostly on their body fat reserves during the torpid state, while minimizing body protein utilization. A number of them may also replenish lost proteins during arousals by consuming food. The review takes stock of the physiological, molecular, and cellular mechanisms that promote body protein and muscle sparing during the inactive state of hibernation. Finally, the review outlines how the detailed understanding of these mechanisms at play in various hibernators is expected to provide innovative solutions to fight human muscle atrophy, to better help the management of obese patients, or to improve the ex vivo preservation of organs.
Collapse
Affiliation(s)
- Fabrice Bertile
- University of Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Spectrométrie de Masse Bio-Organique, Strasbourg, France
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
| | - Yvon Le Maho
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|