1
|
Ko IG, Hwang L, Jin JJ, Kim SH, Kim CJ, Choi YH, Kim HY, Yoo JM, Kim SJ. Pirfenidone improves voiding function by suppressing bladder fibrosis in underactive bladder rats. Eur J Pharmacol 2024; 977:176721. [PMID: 38851561 DOI: 10.1016/j.ejphar.2024.176721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Underactive bladder (UAB), characterized by a complex set of symptoms with few treatment options, can significantly reduce the quality of life of affected people. UAB is characterized by hyperplasia and fibrosis of the bladder wall as well as decreased bladder compliance. Pirfenidone is a powerful anti-fibrotic agent that inhibits the progression of fibrosis in people with idiopathic pulmonary fibrosis. In the current study, we evaluated the efficacy of pirfenidone in the treatment of bladder fibrosis in a UAB rat model. UAB was induced by crushing damage to nerve bundles in the major pelvic ganglion. Forty-two days after surgery, 1 mL distilled water containing pirfenidone (100, 300, or 500 mg/kg) was orally administered once every 2 days for a total of 10 times for 20 days to the rats in the pirfenidone-treated groups. Crushing damage to the nerve bundles caused voiding dysfunction, resulting in increased bladder weight and the level of fibrous related factors in the bladder, leading to UAB symptoms. Pirfenidone treatment improved urinary function, increased bladder weight and suppressed the expression of fibrosis factors. The results of this experiment suggest that pirfenidone can be used to ameliorate difficult-to-treat urological conditions such as bladder fibrosis. Therefore, pirfenidone treatment can be considered an option to improve voiding function in patient with incurable UAB.
Collapse
Affiliation(s)
- Il-Gyu Ko
- Research Support Center, School of Medicine, Keimyung University, Deagu, 42601, South Korea
| | - Lakkyong Hwang
- Team of Efficacy Evaluation, Orient Genia Inc, Seongnam-si, 13201, South Korea; Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Jun-Jang Jin
- Team of Efficacy Evaluation, Orient Genia Inc, Seongnam-si, 13201, South Korea; Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Sang-Hoon Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School Rutgers, The Stat University of New Jersey, Piscataway, NJ, USA
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Young Hyo Choi
- Department of Urology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon-si, South Korea
| | - Hee Youn Kim
- Department of Urology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon-si, South Korea
| | - Je Mo Yoo
- Department of Urology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon-si, South Korea
| | - Su Jin Kim
- Department of Urology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon-si, South Korea.
| |
Collapse
|
2
|
Guo N, Fang Z, Zang Q, Yang Y, Nan T, Zhao Y, Huang L. Spatially resolved metabolomics combined with bioactivity analyses to evaluate the pharmacological properties of two Radix Puerariae species. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116546. [PMID: 37121451 DOI: 10.1016/j.jep.2023.116546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE P. lobata and P. thomsonii are medicinal plants with similar pharmacological functions but different therapeutic effects. A novel method is presented herein to investigate metabolites in terms of their distribution and qualification, quantification is necessary to elucidate the different therapeutic effects of the two Puerariae species. AIM OF THE STUDY The aim of the present study was to perform spatially resolved metabolomics combined with bioactivity analyses to systematically compare the metabolite differences in P. lobata and P. thomsonii by distribution, qualification, quantification, and biological activity to evaluate their pharmacological properties. MATERIALS AND METHODS Air flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) was performed to characterize the differences in the metabolite distributions of P. lobata and P. thomsonii. Further qualitative and quantitative analyses of the differential metabolites were performed using liquid chromatography-mass spectrometry (LC-MS). Biological activities correlated with the differences in the metabolites were validated by MTT assays. RESULTS Some metabolites showed complementary distributions of the phloem and xylem in the two species, saccharide, vitamin, and inosine levels were higher in the phloem of P. thomsonii but higher in the xylem of P. lobata. The 3'-hydroxyl puerarin level was higher in the xylem of P. thomsonii but higher in the phloem of P. lobata. Qualitative and quantitative analyses of the metabolites revealed a total of 52 key differential metabolites. MTT assays showed that daidzein, daidzin, puerarin, ononin, genistin, formononetin, 3'-hydroxy puerarin, 3'-methoxy puerarin, mirificin, and 3'-methoxy daidzin exerted protective effects on H9c2 cells against hypoxia/reoxygenation injury. P. lobata extracts exhibited a significantly better protective efficacy than P. thomsonii extracts. CONCLUSIONS In this study, AFADESI-MSI combined with LC-MS and biological activities comprehensively elucidated metabolite differences in the distribution, qualification, quantification, and pharmacological properties of P. lobata and P. thomsonii. The results of this study could provide a novel strategy for species identification and quality assessment of similar Chinese herbal medicines.
Collapse
Affiliation(s)
- Na Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhengyu Fang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yiqing Yang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Tiegui Nan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuping Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
The Japanese Herbal Medicine Yokukansan Exerted Antioxidant and Analgesic Effects in an Experimental Rat Model of Hunner-Type Interstitial Cystitis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060810. [PMID: 35744072 PMCID: PMC9230041 DOI: 10.3390/medicina58060810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: The Japanese herbal medicine Yokukansan (YKS) has analgesic properties and is used for various pain disorders. The purpose of the present study was to investigate the effects of YKS in Hunner-type interstitial cystitis (HIC) using an experimental rat model of HIC and to explore its antioxidant activity and role as the underlying mechanism of action. Materials and Methods: The antioxidant capacity of YKS was evaluated by determining its hydroxyl radical (·OH) scavenging capacity using electron spin resonance (ESR). Next, the effects of YKS administration were explored using a toll-like receptor-7 agonist-induced rat model of HIC. The von Frey test was performed to assess bladder pain. Three days after HIC induction, the bladder was removed, and the expression of oxidative stress parameters in the bladder wall was investigated (reactive oxygen metabolites (ROMs), ·OH, and 8-hydroxy-2′-deoxyguanosine (8-OhdG)). Results: YKS had a ·OH scavenging capacity according to the ESR study. In the von Frey test, a significant decrease in the withdrawal threshold was observed in the HIC group compared with the control group; however, the decrease was ameliorated by the administration of YKS. Oxidative stress parameters showed increasing tendencies (ROMs test and 8-OHdG) or a significant increase (·OH) in the HIC group compared with the control group; however, the increase was significantly suppressed by the administration of YKS. Conclusions: These findings suggest that YKS is effective against HIC and that its antioxidant activity is involved in the mechanism of action.
Collapse
|
4
|
Huang SS, Huang CH, Ko CY, Chen TY, Cheng YC, Chao J. An Ethnobotanical Study of Medicinal Plants in Kinmen. Front Pharmacol 2022; 12:681190. [PMID: 35222004 PMCID: PMC8864234 DOI: 10.3389/fphar.2021.681190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023] Open
Abstract
Kinmen is an outlying island that has the richest plant resources in Taiwan. The objective of this study was to record the methods that people in Kinmen use medicinal plants and to analyze the cultural characteristics of their use. Field investigations were carried out in various towns and villages in Kinmen, and 80 respondents were included in the survey. The search for respondents was conducted through local elderly people and medicinal plant groups. Semi-structured interviews were conducted with the local people to obtain their knowledge of medicinal plants and how they disseminate this information. Informed consent was obtained prior to the interviews, and the following was determined: plant use value (UV), frequency of citation (FC), and factor of informant consensus (Fic). These parameters were used to quantify the data and measure the agreement among the respondents on using plants to treat different diseases. Finally, the survey results were compared with the representative ethnobotanical literature in neighboring areas to evaluate the similarity between plant usage in Kinmen and neighboring areas as well as to determine whether there are new species or novel usages in the study area. In the Kinmen area, phytotherapy is generally used by elderly people with low educational attainments. According to the survey results, 83 medicinal plants belonging to 48 families were collected. These medicinal plants were mainly distributed in the Compositae, Lamiaceae, and Solanaceae families. Eighteen novel uses that have not been previously documented were found, four of which were related to newly recorded medicinal plant species in the Kinmen area. The results showed that 93.98 and 65.06% of the species collected in the present study were also recorded in literature from Taiwan and Fujian, respectively. This study showed that Kinmen’s ethnobotanical knowledge is closely related to the Catalogue of Medicinal Plant Resources in Taiwan, and local people indeed shared similar uses of medicinal species with people in Taiwan and Fujian (46.99%). The results from this study highlighted the importance of traditional medicine in the Kinmen area, where people have a specific understanding of using medicinal plants and communication with people in Taiwan and Fujian Province in China. It was found that Kinmen shares ethnobotanical knowledge with Taiwan and Fujian.
Collapse
Affiliation(s)
- Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chia-Hung Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Pharmacy, Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
- Department of Nursing, National Quemoy University, Kinmen, Taiwan
| | - Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Ting-Yang Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Jung Chao
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Master Program for Food and Drug Safety, China Medical University, Taichung, Taiwan
- *Correspondence: Jung Chao,
| |
Collapse
|
5
|
Yu Y, Chen J, Zhang X, Wang Y, Wang S, Zhao L, Wang Y. Identification of anti-inflammatory compounds from Zhongjing formulae by knowledge mining and high-content screening in a zebrafish model of inflammatory bowel diseases. Chin Med 2021; 16:42. [PMID: 34059101 PMCID: PMC8166029 DOI: 10.1186/s13020-021-00452-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are chronic relapsing intestinal inflammations with increasing global incidence, and new drug development remains in urgent demand for IBD management. To identify effective traditional Chinese medicine (TCM) formulae and compounds in IBD treatment, we innovatively combined the techniques of knowledge mining, high-content screening and high-resolution mass spectrometry, to conduct a systematic screening in Zhongjing formulae, which is a large collection of TCM prescriptions with most abundant clinical evidences. METHODS Using Word2vec-based text learning, the correlations between 248 Zhongjing formulae and IBD typical symptoms were analyzed. Next, from the top three formulae with predicted relationship with IBD, TCM fractions were prepared and screened on a transgenic zebrafish IBD model for their therapeutic effects. Subsequently, the chemical compositions of the fraction hits were analyzed by mass spectrometry, and the major compounds were further studied for their anti-IBD effects and potential mechanisms. RESULTS Through knowledge mining, Peach Blossom Decoction, Pulsatilla Decoction, and Gegen Qinlian Decoction were predicted to be the three Zhongjing formulae mostly related to symptoms typical of IBD. Seventy-four fractions were prepared from the three formulae and screened in TNBS-induced zebrafish IBD model by high-content analysis, with the inhibition on the intestinal neutrophil accumulation and ROS level quantified as the screening criteria. Six herbal fractions showed significant effects on both pathological processes, which were subsequently analyzed by mass spectrometry to determine their chemical composition. Based on the major compounds identified by mass spectrometry, a second-round screen was conducted and six compounds (palmatine, daidzin, oroxyloside, chlorogenic acid, baicalin, aesculin) showed strong inhibitory effects on the intestinal inflammation phenotypes. The expression of multiple inflammatory factors, including il1β, clcx8a, mmp and tnfα, were increased in TNBS-treated fish, which were variously inhibited by the compounds, with aesculin showing the most potent effects. Moreover, aesculin and daidzin also upregulated e-cadherin's expression. CONCLUSION Taken together, we demonstrated the regulatory effects of several TCM formulae and their active compounds in the treatment of IBD, through a highly efficient research strategy, which can be applied in the discovery of effective TCM formulae and components in other diseases.
Collapse
Affiliation(s)
- Yunru Yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shufang Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
6
|
Merwid-Ląd A, Ksiądzyna D, Hałoń A, Szkudlarek D, Trocha M, Szandruk-Bender M, Matuszewska A, Nowak B, Sozański T, Kuźniar A, Szeląg A. Morin-5'-Sulfonic Acid Sodium Salt (NaMSA) Attenuates Cyclophosphamide-Induced Histological Changes in Genitourinary Tract in Rats-Short Report. Pharmaceuticals (Basel) 2021; 14:ph14030192. [PMID: 33652916 PMCID: PMC7996932 DOI: 10.3390/ph14030192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 01/02/2023] Open
Abstract
Cyclophosphamide (CPX) exerts toxicity in the urogenital system. The current study was designed to evaluate the effect of morin-5′-sulfonic acid sodium salt (NaMSA) on CPX-induced urogenital toxicity in rats. NaMSA (100 mg/kg/daily) and CPX (15 mg/kg/daily) alone or in combination and 0.9% NaCl (as a control) were given intragastrically for 10 days. Testes and epididymes from male and urinary bladders from male and female rats were evaluated histologically. In testes and epididymes, morphological changes and relative decrease in sperm count were assessed. In urinary bladders edema, hemorrhage and urothelium erosions were described by 0–2 points scoring system. Reproductive score (RS—in total 6 points) and urinary bladder score (BS—in total 6 points) were thereafter calculated. In CPX-receiving group RS (2.7) and BS (3.3) were significantly higher than in the control (0.5 and 0.25 for RS and BS, respectively). Co-administration of NaMSA reversed most of the morphological changes, which was reflected by lower RS and BS score (0.5 and 1.2 for RS and BS, respectively). The preliminary findings suggest that NaMSA may attenuate CPX-induced histological changes in rat urogenital tract.
Collapse
Affiliation(s)
- Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, ul. Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (D.K.); (M.T.); (M.S.-B.); (A.M.); (B.N.); (T.S.); (A.S.)
- Correspondence: ; Tel.: +48-71-784-1442
| | - Dorota Ksiądzyna
- Department of Pharmacology, Wroclaw Medical University, ul. Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (D.K.); (M.T.); (M.S.-B.); (A.M.); (B.N.); (T.S.); (A.S.)
| | - Agnieszka Hałoń
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland;
| | - Danuta Szkudlarek
- Department of Pathomorphology, Wroclaw Medical University, ul. Marcinkowkiego 1, 50-368 Wrocław, Poland;
| | - Małgorzata Trocha
- Department of Pharmacology, Wroclaw Medical University, ul. Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (D.K.); (M.T.); (M.S.-B.); (A.M.); (B.N.); (T.S.); (A.S.)
| | - Marta Szandruk-Bender
- Department of Pharmacology, Wroclaw Medical University, ul. Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (D.K.); (M.T.); (M.S.-B.); (A.M.); (B.N.); (T.S.); (A.S.)
| | - Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, ul. Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (D.K.); (M.T.); (M.S.-B.); (A.M.); (B.N.); (T.S.); (A.S.)
| | - Beata Nowak
- Department of Pharmacology, Wroclaw Medical University, ul. Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (D.K.); (M.T.); (M.S.-B.); (A.M.); (B.N.); (T.S.); (A.S.)
| | - Tomasz Sozański
- Department of Pharmacology, Wroclaw Medical University, ul. Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (D.K.); (M.T.); (M.S.-B.); (A.M.); (B.N.); (T.S.); (A.S.)
| | - Anna Kuźniar
- Department of Inorganic and Analytical Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, ul. Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (D.K.); (M.T.); (M.S.-B.); (A.M.); (B.N.); (T.S.); (A.S.)
| |
Collapse
|
7
|
Wang J, Guo J, Li S, Zhang M, He B. Protective effect of ethyl acetate fraction from Semen sojae germinatum, the processed sprout of Chinese black soybean, on rat experimental osteoarthritis. BMC Complement Med Ther 2020; 20:117. [PMID: 32306945 PMCID: PMC7168892 DOI: 10.1186/s12906-020-02920-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/07/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Our previous in vitro study reported that the ethyl acetate fraction (EAF) of Semen sojae germinatum (SSG), the processed sprout of Chinese black soybean, possessed the potent anti-inflammatory and chondroprotective properties. The aim of the present work was to verify the in vivo antiosteoarthritic effect of EAF from SSG on a rat osteoarthritis (OA) model . METHODS A classical rat OA model was surgically induced by anterior cruciate ligament transaction (ACLT). The OA rats were intra-articularly administered EAF from SSG for 8 weeks. The cartilage and synovial tissues were stained with hematoxylin and eosin (HE) to observe the histopathological changes. Safranin O/fast green staining was used to assess the glycosaminoglycan content in cartilage tissue sections. The expression of type II collagen and matrix metalloproteinase (MMP)-13 in cartilage was measured by immunohistochemistry. The apoptotic chondrocytes in the cartilage sections were detected using TUNEL assay. The concentrations of interleukin (IL)-1β and tumor necrosis factor (TNF)-ɑ in synovial fluid were determined using ELISA. RESULTS Intra-articular administration of EAF from SSG well retained the structure and superficial layer of cartilage tissues, ameliorated cartilage lesion and the degradation of cartilage matrix, including proteoglycan and type II collagen, induced by ACLT operation. The ACLT-induced upregulation of MMP-13 expression in the cartilage tissues was resisted by EAF from SSG. Moreover, EAF from SSG inhibited the ACLT-induced chondrocyte apoptosis. Compared to OA model group, the inflammatory status of synovial membrane was improved, the levels of inflammatory cytokines IL-1β and TNF-ɑ in synovial fluid were decreased in rats administrated with EAF from SSG. CONCLUSION These data suggested that EAF from SSG displayed in vivo protective effect on OA development via preventing the degeneration of articular cartilage, inhibiting chondrocyte apoptosis and suppressing synovial inflammation.
Collapse
Affiliation(s)
- Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065 China
- New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 China
| | - Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065 China
- New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 China
| | - Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065 China
- New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 China
| | - Mengya Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065 China
- New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 China
| | - Bingshu He
- Department of Orthopedic Surgery, Hubei Provincial Women and Children’s Hospital, Wuhan, 430070 China
| |
Collapse
|