1
|
Jongwachirachai P, Ruankham W, Apiraksattayakul S, Intharakham S, Prachayasittikul V, Suwanjang W, Prachayasittikul V, Prachayasittikul S, Phopin K. Neuroprotective Properties of Coriander-Derived Compounds on Neuronal Cell Damage under Oxidative Stress-Induced SH-SY5Y Neuroblastoma and in Silico ADMET Analysis. Neurochem Res 2024; 49:3308-3325. [PMID: 39298035 PMCID: PMC11502562 DOI: 10.1007/s11064-024-04239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
An imbalance between reactive oxygen species (ROS) production and antioxidant defense driven by oxidative stress and inflammation is a critical factor in the progression of neurodegenerative diseases such as Alzheimer's and Parkinson's. Coriander (Coriandrum sativum L.), a culinary plant in the Apiaceae family, displays various biological activities, including anticancer, antimicrobial, and antioxidant effects. Herein, neuroprotective properties of three major bioactive compounds derived from coriander (i.e., linalool, linalyl acetate, and geranyl acetate) were investigated on hydrogen peroxide-induced SH-SY5Y neuroblastoma cell death by examining cell viability, ROS production, mitochondrial membrane potential, and apoptotic profiles. Moreover, underlying mechanisms of the compounds were determined by measuring intracellular sirtuin 1 (SIRT1) enzyme activity incorporated with molecular docking. The results showed that linalool, linalyl acetate, and geranyl acetate elicited their neuroprotection against oxidative stress via protecting cell death, reducing ROS production, preventing cell apoptosis, and modulating SIRT1 longevity. Additionally, in silico pharmacokinetic predictions indicated that these three compounds are drug-like agents with a high probability of absorption and distribution, as well as minimal potential toxicities. These findings highlighted the potential neuroprotective linalool, linalyl acetate, and geranyl acetate for developing alternative natural compound-based neurodegenerative therapeutics and prevention.
Collapse
Affiliation(s)
- Papitcha Jongwachirachai
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Setthawut Apiraksattayakul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Saruta Intharakham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Wilasinee Suwanjang
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Rafique F, Mushtaq MN, Ahmed H, Younis W. Evaluation and estimation of diuretic activity of the linalyl acetate in the rats. BRAZ J BIOL 2024; 83:e277354. [PMID: 38452187 DOI: 10.1590/1519-6984.277354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/07/2023] [Indexed: 03/09/2024] Open
Abstract
This study aimed to explore the diuretic activity of linalyl acetate (LA). LA is an essential oil, it is an integral phyto-constituent of various plants. In this study, acute and chronic diuretic activities were explored by measuring the levels of different electrolytes and pH in the urine of experimental rats. Rats were divided into five groups. The control group was given 10 mg/kg normal saline, the treated group was given 10 mg/kg furosemide, and the remaining 3 groups received different doses of LA including 25, 50, and 75 mg/kg through intraperitoneal route, to determine its diuretic potential. Urine volume for acute diuretic activity was measured for 6 hours however for chronic diuretic activity was measured for 6 days. For a comparative study of LA with a control group and treated group with reference drug, diuretic index was used. Moreover, the underlying mechanism of the diuretic activity was also explored by comparing atropine, L-NAME, and indomethacin. The results of each group with 6 rats in each group were obtained by ± standard error of the mean of every group. Analysis of Variance (ANOVA) was used for statistical analysis. Results revealed that the LA 75 mg/kg dose showed comparable results as of furosemide. Moreover, this study revealed the involvement of muscarinic receptors to produce diuresis in comparison with atropine with very little involvement of prostanoids and no effect on NO pathway induced by indomethacin and L-NAME respectively. It is concluded that LA possess anti-diuretic potential. Muscarinic receptors might be involved in producing diuretic effects.
Collapse
Affiliation(s)
- F Rafique
- The University of Lahore, Faculty of Pharmacy, Lahore, Pakistan
| | - M N Mushtaq
- The University of Lahore, Faculty of Pharmacy, Lahore, Pakistan
| | - H Ahmed
- Sialkot Institute of Science and Technology, Sialkot, Pakistan
| | - W Younis
- The University of Lahore, Faculty of Pharmacy, Lahore, Pakistan
- New Jersey Medical School-Rutgers, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, United States
| |
Collapse
|
3
|
Voogd EJHF, Frega M, Hofmeijer J. Neuronal Responses to Ischemia: Scoping Review of Insights from Human-Derived In Vitro Models. Cell Mol Neurobiol 2023; 43:3137-3160. [PMID: 37380886 PMCID: PMC10477161 DOI: 10.1007/s10571-023-01368-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/27/2023] [Indexed: 06/30/2023]
Abstract
Translation of neuroprotective treatment effects from experimental animal models to patients with cerebral ischemia has been challenging. Since pathophysiological processes may vary across species, an experimental model to clarify human-specific neuronal pathomechanisms may help. We conducted a scoping review of the literature on human neuronal in vitro models that have been used to study neuronal responses to ischemia or hypoxia, the parts of the pathophysiological cascade that have been investigated in those models, and evidence on effects of interventions. We included 147 studies on four different human neuronal models. The majority of the studies (132/147) was conducted in SH-SY5Y cells, which is a cancerous cell line derived from a single neuroblastoma patient. Of these, 119/132 used undifferentiated SH-SY5Y cells, that lack many neuronal characteristics. Two studies used healthy human induced pluripotent stem cell derived neuronal networks. Most studies used microscopic measures and established hypoxia induced cell death, oxidative stress, or inflammation. Only one study investigated the effect of hypoxia on neuronal network functionality using micro-electrode arrays. Treatment targets included oxidative stress, inflammation, cell death, and neuronal network stimulation. We discuss (dis)advantages of the various model systems and propose future perspectives for research into human neuronal responses to ischemia or hypoxia.
Collapse
Affiliation(s)
- Eva J H F Voogd
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands.
| | - Monica Frega
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
4
|
Shin YK, Seol GH. Effects of linalyl acetate on oxidative stress, inflammation and endothelial dysfunction: can linalyl acetate prevent mild cognitive impairment? Front Pharmacol 2023; 14:1233977. [PMID: 37576815 PMCID: PMC10416234 DOI: 10.3389/fphar.2023.1233977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Mild cognitive impairment (MCI) is a major public health challenge with an increasing prevalence. Although the mechanisms underlying the development of MCI remain unclear, MCI has been reported to be associated with oxidative stress, inflammatory responses, and endothelial dysfunction, suggesting that agents that reduce these factors may be key to preventing MCI. Currently, no agents have been approved for the treatment of MCI, with the efficacy of commonly prescribed cholinesterase inhibitors remaining unclear. Relatively safe natural products that can prevent the development of MCI are of great interest. Linalyl acetate (LA), the major component of clary sage and lavender essential oils, has been shown to have a variety of pharmacological effects, including anti-hypertensive, anti-diabetic, neuroprotective, anti-inflammatory, and antioxidant properties, which may have the potential for the prevention of MCI. The present review briefly summarizes the pathogenesis of MCI related to oxidative stress, inflammatory responses, and endothelial dysfunction as well as the benefits of LA against these MCI-associated factors. The PubMed and Google Scholar databases were used to search the relevant literature. Further clinical research may lead to the development of new strategies for preventing MCI, particularly in high-risk populations with oxidative stress, inflammatory responses, and endothelial dysfunction (e.g., patients with hypertension and/or diabetes mellitus).
Collapse
Affiliation(s)
- You Kyoung Shin
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Kim YJ, Shin YK, Seo E, Seol GH. Astrocytes Reduce Store-Operated Ca 2+ Entry in Microglia under the Conditions of an Inflammatory Stimulus and Muscarinic Receptor Blockade. Pharmaceuticals (Basel) 2022; 15:ph15121521. [PMID: 36558972 PMCID: PMC9783111 DOI: 10.3390/ph15121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation and loss of cholinergic transmission are involved in neurodegenerative diseases, but possible interactions between them within neurons, astrocytes, and microglia have not yet been investigated. We aimed to compare store-operated Ca2+ entry (SOCE) in neurons, astrocytes, and microglia following cholinergic dysfunction in combination with (or without) an inflammatory stimulus and to investigate the effects of linalyl acetate (LA) on this process. We used the SH-SY5Y, U373, and BV2 cell lines related to neurons, astrocytes, and microglia, respectively. Scopolamine or lipopolysaccharide (LPS) was used to antagonize the muscarinic receptors or induce inflammatory responses, respectively. The concentration of intracellular Ca2+ was measured using Fura-2 AM. Treatment with scopolamine and LPS significantly increased SOCE in the neuron-like cells and microglia but not in the scopolamine-pretreated astrocytes. LA significantly reduced SOCE in the scopolamine-pretreated neuron-like cells and microglia exposed to LPS, which was partially inhibited by the Na+-K+ ATPase inhibitor ouabain and the Na+/Ca2+ exchanger (NCX) inhibitor Ni2+. Notably, SOCE was significantly reduced in the LPS plus scopolamine-pretreated cells mixed with astrocytes and microglia, with a two-fold increase in the applied number of astrocytes. LA may be useful in protecting neurons and microglia by reducing elevated SOCE that is induced by inflammatory responses and inhibiting the muscarinic receptors via Na+-K+ ATPase and the forward mode of NCX. Astrocytes may protect microglia by reducing increased SOCE under the conditions of inflammation and a muscarinic receptor blockade.
Collapse
Affiliation(s)
- Yoo Jin Kim
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - You Kyoung Shin
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Eunhye Seo
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Correspondence:
| |
Collapse
|