1
|
Yardimci A, Mulayim S, Kaya Tektemur N, Tektemur A, Erensoy A. Chronic levamisole exposure in male rats alters sexual behavior and induces apoptosis in the testis. Drug Chem Toxicol 2024; 47:534-543. [PMID: 37246936 DOI: 10.1080/01480545.2023.2217483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/30/2023]
Abstract
Levamisole is an anti-helminthic drug developed and introduced in veterinary medicine, and it has been used more frequently after the inclusion of its usage in human medicine regarding disorders with immunomodulatory properties. In recent years, it has started to attract attention since it has beneficial effects on the treatment of COVID-19 due to its immunomodulatory properties. To investigate the effects of levamisole on sexual behavior and the reproductive system in male rats, two groups were formed the vehicle (n = 10) and levamisole (n = 10) groups. The vehicle group was given purified water whereas the levamisole group was administered with levamisole (2 mg/kg) by oral gavage daily for 4 weeks. Levamisole treatment significantly increased the mount latency (ML, P < 0.001) as well as the intromission latency (IL, P < 0.01). It also significantly prolonged postejaculatory interval (PEI, P < 0.01), decreased copulatory rate (CR, P < 0.05), and sexual activity index (SAI, P < 0.05). It significantly decreased serum monoamine oxidase A (MAO-A) levels (P < 0.05). Additionally, levamisole induced disorganizations of germinal epithelial cells of seminiferous tubules, congestion, edema in the interstitial area, and metaphase arrest in some spermatocytes (P < 0.001), and it significantly increased the immunohistochemical expressions of apoptotic Bax and cytochrome c, which is crucial proapoptotic protein, in the testis (P < 0.001). Also, levamisole significantly upregulated the mRNA levels of the apoptosis-related key regulatory genes, including Bax (Bcl-2-associated X protein, P = 0.05) and Bax/Bcl-2 ratio (P < 0.01) in testis. The current research is the first to show that levamisole may decrease sexual performance, potency, sexual motivation, and libido and induce apoptosis in the testis.
Collapse
Affiliation(s)
- Ahmet Yardimci
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Sefa Mulayim
- Department of Medical Parasitology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Nalan Kaya Tektemur
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Erensoy
- Department of Medical Parasitology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
2
|
Altinoz MA, Ozpinar A, Hacker E, Ozpinar A. Combining locoregional CAR-T cells, autologous + allogeneic tumor lysate vaccination and levamisole in treatment of glioblastoma. Immunopharmacol Immunotoxicol 2022; 44:797-808. [PMID: 35670420 DOI: 10.1080/08923973.2022.2086136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain malignancy and harbors a microenvironment limiting immune cells activity. CAR-T cells are being tested in the treatment of cancers and there exist reports which demonstrate dramatic regression of multicentric GBMs following intrathecal treatment with CAR-T cells. In this article, a triple approach for immune treatment of GBM is proposed. First, GBM tumor specimens for each patient will be saved and cultured to obtain tumor lysates. Then, levamisole will be applied, which possesses immunostimulating, anti-glycolytic, and anti-angiogenic features. Following priming the immune system, GBM patients will be injected with lysates of their own tumor cells plus lysates from a GBM cell line, U251. After 3 months of this treatment, CAR-T cells (transduced with IL13Rα2-CAR) will be applied via intratumoral approach. As such, genetically-modified and native immunocytes may 'meet' in the vicinity of deeply-invading tumor cells and demonstrate greater efficacy via cell-cell interactions. By this, a self-propagating cyclic process - a cancer-immunity cycle - may be initiated to eradicate cancer cells.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| | - Alp Ozpinar
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Hacker
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aysel Ozpinar
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| |
Collapse
|
3
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies’ clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Ding L, Hu Y, Huang H. Novel progresses of chimeric antigen receptor (CAR) T cell therapy in multiple myeloma. Stem Cell Investig 2021; 8:1. [PMID: 33575314 DOI: 10.21037/sci-2020-029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022]
Abstract
Multiple myeloma (MM) is a malignant proliferative disease of plasma cells, which leads to suppressed hematopoietic and osteolytic diseases. Despite the use of traditional chemotherapy, hematopoietic stem cell transplantation (HSCT) and targeted drugs, MM still cannot be completely cured. In recent years, chimeric antigen receptor (CAR) T cells have revolutionized immunotherapy and cancer treatment. The great success of CAR-T cells in leukemia and lymphoma has promoted its development in MM. The primary requisite for developing clinically effective CAR-T cells suitable for MM is to identify the appropriate targets. In early clinical trials, CAR-T cells targeting B-cell maturation antigen (BCMA) have shown significant anti-MM activity. Currently popular targets in clinical research and preclinical research include CD138, CD38, CS1, CD19, κ light chain, CD56, CD44v6, Lewis Y, NY-ESO-1, CD229, etc. Common toxicities such as cytokine release syndrome (CRS) and neurotoxicity also occur but controllable. MM cells are mainly localized in bone marrow, therefore, the bone marrow microenvironment has a significant effect on the therapeutic effect of CAR-T cells. Targeting both MM cells and the bone marrow microenvironment is currently the most promising treatment. In this review, we provide a comprehensive overview of CAR-T cell therapy in MM, as well as outline potential targets and methods that can overcome local immunosuppression and improve the efficacy of CAR-T cells.
Collapse
Affiliation(s)
- Lijuan Ding
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
7
|
Qiao X, Wang C, Wang W, Shang Y, Li Y, Ni J, Chen SZ. Levamisole enhances DR4-independent apoptosis induced by TRAIL through inhibiting the activation of JNK in lung cancer. Life Sci 2020; 257:118034. [PMID: 32621923 DOI: 10.1016/j.lfs.2020.118034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
THE HEADINGS AIMS Levamisole has anti-parasite and antitumor activities, but the anti-lung cancer mechanism has not been studied. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising drug because of the ability to selectively target cancer cells. However, the tolerance of cancer cells to TRAIL limits its antitumor activity. Other drugs combined with TRAIL need to be explored to enhance its antitumor activity. Based on the adjuvant anticancer effect of levamisole on anticancer drugs activity, the antitumor activity of levamisole combined with TRAIL will be investigated. MATERIALS AND METHODS In vitro and in vivo experiments were employed to investigate the anti-tumor activity. Flow-cytometry analysis, western blotting and siRNA transfection were used to explore the molecular mechanism. KEY FINDINGS Levamisole decreased the proliferation of lung cancer cells in vitro and in vivo and induced cell cycle arrest in G0/G1 phase. Besides, levamisole also enhanced TRAIL-induced DR4-independent apoptosis by inhibiting the phosphorylation of cJUN. A new cellular protective pathway LC3B-DR4/Erk was also disclosed, in which levamisole only increased the expression of LC3B and then activated the phosphorylation of Erk and increased the expression of DR4, while p-Erk and DR4 inter-regulated. SIGNIFICANCE Levamisole may be used as an adjuvant of TRAIL in treating lung cancer. The discovery of LC3B-DR4/Erk as a new protective pathway provides a new direction for sensitizing lung cancer cells to TRAIL.
Collapse
Affiliation(s)
- Xinran Qiao
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Chen Wang
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Wendie Wang
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Yue Shang
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Yi Li
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Jun Ni
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Shu-Zhen Chen
- Institute of Medicinal Biotehnology, Chinese Academy of Medical Sciences & Peking Union Medical College, China.
| |
Collapse
|
8
|
Prevalence of Syndecan-1 (CD138) Expression in Different Kinds of Human Tumors and Normal Tissues. DISEASE MARKERS 2019; 2019:4928315. [PMID: 31976021 PMCID: PMC6954471 DOI: 10.1155/2019/4928315] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022]
Abstract
Syndecan-1 (CD138) is a transmembrane proteoglycan known to be expressed in various normal and malignant tissues. It is of interest because of a possible prognostic role of differential expression in tumors and its role as a target for indatuximab, a monoclonal antibody coupled with a cytotoxic agent. To comprehensively analyze CD138 in normal and neoplastic tissues, we used tissue microarrays (TMAs) for analyzing immunohistochemically detectable CD138 expression in 2,518 tissue samples from 85 different tumor entities and 76 different normal tissue types. The data showed that CD138 expression is abundant in tumors. At least an occasional weak CD138 immunostaining could be detected in 71 of 82 (87%) different tumor types, and 58 entities (71%) had at least one tumor with a strong positivity. In normal tissues, a particularly strong expression was found in normal squamous epithelium of various organs, goblet and columnar cells of the gastrointestinal tract, and in hepatocytes. The highly standardized analysis of most human cancer types resulted in a ranking order of tumors according to the frequency and levels of CD138 expression. CD138 immunostaining was highest in squamous cell carcinomas such as from the esophagus (100%), cervix uteri (79.5%), lung (85.7%), vagina (89.7%) or vulva (73.3%), and in invasive urothelial cancer (76.2%). In adenocarcinomas, CD138 was also high in lung (82.9%) and colorectal cancer (85.3%) but often lower in pancreas (73.3%), stomach (54.2% in intestinal type), or prostate carcinomas (16.3%). CD138 expression was usually low or absent in germ cell tumors, sarcomas, endocrine tumors including thyroid cancer, and neuroendocrine tumors. In summary, the preferential expression in squamous cell carcinomas of various sites makes these cancers prime targets for anti-CD138 treatments once these might become available. Abundant expression in many different normal tissues might pose obstacles to exploiting CD138 as a therapeutic target, however.
Collapse
|