1
|
Gattuso G, Rizzo R, Lavoro A, Spoto V, Porciello G, Montagnese C, Cinà D, Cosentino A, Lombardo C, Mezzatesta ML, Salmeri M. Overview of the Clinical and Molecular Features of Legionella Pneumophila: Focus on Novel Surveillance and Diagnostic Strategies. Antibiotics (Basel) 2022; 11:370. [PMID: 35326833 PMCID: PMC8944609 DOI: 10.3390/antibiotics11030370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is one of the most threatening nosocomial pathogens. The implementation of novel and more effective surveillance and diagnostic strategies is mandatory to prevent the occurrence of legionellosis outbreaks in hospital environments. On these bases, the present review is aimed to describe the main clinical and molecular features of L. pneumophila focusing attention on the latest findings on drug resistance mechanisms. In addition, a detailed description of the current guidelines for the disinfection and surveillance of the water systems is also provided. Finally, the diagnostic strategies available for the detection of Legionella spp. were critically reviewed, paying the attention to the description of the culture, serological and molecular methods as well as on the novel high-sensitive nucleic acid amplification systems, such as droplet digital PCR.
Collapse
Affiliation(s)
- Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Vincenzoleo Spoto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Giuseppe Porciello
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (C.M.)
| | - Concetta Montagnese
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (C.M.)
| | - Diana Cinà
- Health Management of the “Cannizzaro” Emergency Hospital of Catania, 95126 Catania, Italy;
- Clinical Pathology and Clinical Molecular Biology Unit, “Garibaldi Centro” Hospital, ARNAS Garibaldi, 95123 Catania, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Maria Lina Mezzatesta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| |
Collapse
|
2
|
Budowa i znaczenie II systemu sekrecji białek w ekologii i patogenezie Legionella pneumophila. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Pałeczki Legionella pneumophila pasożytują w komórkach odległych filogenetycznie gospodarzy, w środowisku wodnym w pierwotniakach, a w organizmie człowieka w makrofagach alweolarnych. Zdolność tych bakterii do wewnątrzkomórkowego namnażania się w komórkach fagocytujących, wyspecjalizowanych do niszczenia mikroorganizmów, ma podstawowe znaczenie dla rozwoju nietypowego zapalenia płuc zwanego chorobą legionistów. Umiejscowione na kilku różnych loci chromosomu bakteryjnego geny II systemu sekrecji L. pneumophila kodują co najmniej 25 białek, w tym enzymy o aktywności lipolitycznej, proteolitycznej, rybonukleazy oraz białka unikalne bakterii Legionella. W środowisku naturalnym T2SS L. pneumophila odgrywa decydującą rolę w ekologii tych drobnoustrojów determinując ich zdolność do przeżycia zarówno w postaci planktonicznej, jak i w strukturach biofilmu w słodkowodnych zbiornikach o niskiej temperaturze. Białka T2SS umożliwiają L. pneumophila zakażenie różnych gatunków pierwotniaków, a substraty tego systemu określają zakres pierwotniaczego gospodarza. Namnażanie się bakterii w różnorodnych pierwotniakach przyczynia się do ich rozsiewania oraz transmisji do antropogenicznych źródeł. Białka wydzielane za pomocą II systemu sekrecji determinują również zdolność L. pneumophila do zakażania mysich makrofagów alweolarnych i szpiku kostnego, ludzkich makrofagów linii U937 i THP-1 oraz komórek nabłonkowych pęcherzyków płucnych. Enzymy wydzielane za pomocą tego systemu, takie jak: proteazy, aminopeptydazy czy fosfolipazy umożliwiają pozyskanie substancji pokarmowych oraz powodują destrukcję tkanki płucnej myszy. W organizmie człowieka białka T2SS przyczyniają się do osłabienia wrodzonej odpowiedzi immunologicznej na zakażenie L. pneumophila przez hamowanie indukcji prozapalnych cytokin (IL-6, TNF-α, IL-1 oraz IL-8).
Collapse
|
3
|
Ghorbani A, Hashemzadeh M, Amin M, Moosavian M, Nashibi R, Mehraban Z. Occurrence of the Legionella species in the respiratory samples of patients with pneumonia symptoms from Ahvaz, Iran; first detection of Legionella cherrii. Mol Biol Rep 2021; 48:7141-7146. [PMID: 34618288 DOI: 10.1007/s11033-021-06704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND This study aimed to investigate the occurrence of Legionella species in the respiratory samples of patients with pneumonia symptoms from Ahvaz, Iran by culture and the real-time PCR of 23S-5S rRNA gene spacer region. METHODS AND RESULTS A total of 123 clinical respiratory samples including 63 pleural aspirates, 57 bronchoalveolar lavage (BAL), and 3 sputum were collected from 65 males and 58 females with pneumonia symptoms. All samples were cultured on the Modified Wadowsky-Yee (MWY) agar. The Legionella species was identified by routine bacteriological tests. The presence of the 16S-23S rRNA spacer region gene was investigated by real-time PCR. The Legionella species were differentiated by sequencing of 16S-23S rRNA gene. A total of 2 (1.6%) BAL specimens were positive for Legionella species by culture method. No Legionella spp. were identified in pleural aspirates and sputum samples by the culture method. Using real-time PCR, 9 (7.3%) samples including 6 BAL, 1 sputum, and 2 pleural aspirates were positive for legionella species. These species were detected in 3 (5.2%) females and 6 males (9.2%). The results of sequencing showed that eight species were L. pneumophila while one was L. cherrii. Also, the 2 isolates that were identified by culture method, were confirmed as L. pneumophila by sequencing. CONCLUSIONS The results showed that using the real-time PCR has a more efficacy for detecting of Legionella species in respiratory samples. Also, L. pneumophila was the most prevalent species circulating in the southwest region of Iran. So, periodic monitoring programs is recommended to prevent epidemics due to this bacterium.
Collapse
Affiliation(s)
- Atosa Ghorbani
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Hashemzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mansour Amin
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mojtaba Moosavian
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious Diseases and Tropical Medicine Ward, Razi Teaching Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Mehraban
- Department of Pulmonology, Golestan Teaching Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Genetic Diversity of the Legionella pneumophila dotA Gene Detected on Surfaces of Respiratory Therapy Equipment. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionellosis is a neglected disease due to the absence of well-defined clinical symptoms and difficulties in isolating the causal organism. Legionella spp. is known to colonize the lumen of respiratory therapy equipment(RTE) and evade conventional detection by entering the viable but non-culturable state. Monitoring these surfaces for Legionella pneumophila in addition to routine monitoring of water could aid in decreasing incidences of hospital-acquired infections by this pathogen. In this study swabs of different respiratory therapy equipment were tested for the presence of Legionella by conventional culture-based methods versus molecular detection of culture-independent template by polymerase chain reaction (PCR). Genetic diversity of the genes amplified were studied using bioinformatic tools. The dotA genes were genetically diverse indicating no clonality. This communication highlights that the persistence of virulence genes like dotA on abiotic surfaces can result in the mobilization of these genes to other species and give rise to virulent forms especially in a healthcare setting.
Collapse
|
5
|
Abstract
Legionellosis is a serious bacterial infection characterized by atypical pneumonia primarily due to infection with Legionella pneumophila, and bathing can be a potential cause of this infection. Legionellosis was first identified in 1977, and it is caused by Gram-negative bacteria belonging to the genus Legionella. Legionellosis remains an important public health threat, particularly in Japan, where the population is rapidly aging, thereby becoming more at risk of developing severe disease and accompanying life-threatening pneumonia. The bacteria are most commonly transmitted via the inhalation of contaminated aerosols produced and broadcast via water sprays, jets or mists. Infection can also occur via the aspiration of contaminated water or ice, or through inhalation of contaminated dust. Because the signs and symptoms of Legionnaires' disease (LD), as well as radiographic imaging are similar to pneumonia caused by other pathogens, a specific diagnostic test is required, such as a urine antigen detection test. Six clinical and laboratory parameters, a high body temperature, a non-productive cough, low serum sodium and platelet counts, and high lactate dehydrogenase (LDH) and c-reactive protein concentrations can be used to reliably predict the likelihood of LD. The first choices for chemotherapy are fluoroquinolone and macrolide antibiotic drugs. The main goals of LD prevention measures are 1) the prevention of microbial growth and biofilm formation, 2) the removal of all biofilm formed on equipment and in facilities, 3) minimizing aerosol splash and spread, and 4) minimizing bacterial contamination from external sources. It is apparent that, in Japan, where hot spring (onsen) bathing is common among aged people, strict regulations need to be in place - and enforced - to ensure that all Japanese onsens and spas provide a safe environment and undertake regular, effective infection control practices.
Collapse
|
6
|
Sreenath K, Dey AB, Kabra SK, Thakur B, Guleria R, Chaudhry R. Legionella pneumophila in Patients with Pneumonia at a Referral Hospital, New Delhi, India, 2015-2020. Am J Trop Med Hyg 2020; 104:854-860. [PMID: 33319733 DOI: 10.4269/ajtmh.20-0653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/08/2020] [Indexed: 12/26/2022] Open
Abstract
Legionnaires' disease (LD) is an established cause of pneumonia, and the disease remains largely underdiagnosed. Even though LD has been reported from many parts of the world, only sporadic cases have been reported in India. During February 2015-January 2020, we enrolled 597 patients with radiographically confirmed pneumonia and tested respiratory secretions for Legionella spp. by using real-time PCR, and culture. A commercial urinary antigen test (UAT) was also used to detect the Legionella pneumophila (Lp) serogroup 1 antigen in urine. An LD case was defined as a patient with pneumonia and positive results for Legionella spp. infections determined by real-time PCR (from any respiratory specimen) or culture or UAT. Demographic data, risk factors, clinical, radiological, and outcome data of Lp-positive and Lp-negative patients were compared using logistic regression. Over the study period, 14 (2.3%) patients were positive for Legionella spp. infections by real-time PCR and UAT; eight (57%) were admitted to the intensive care unit, and four (28.6%) in-hospital deaths occurred. Bivariate analysis showed that renal disease, neurological conditions, confusion, leukocytosis, and requirement of oxygen support were more common in the Lp-positive group than in the Lp-negative group. However, multivariate analysis failed to confirm most of these differences; renal disease was the only independent variable remaining significant. All test methods have intrinsic limitations in identifying Legionella; therefore, more than one testing method should be used. Application of molecular assays including real-time PCR has great value because of its high sensitivity, specificity, and rapid diagnostic potency. Increased awareness and improved diagnostic testing could facilitate early detection of cases, pathogen-directed therapy, and improved outcomes for patients.
Collapse
Affiliation(s)
- K Sreenath
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - A B Dey
- Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - S K Kabra
- Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Bhaskar Thakur
- Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Pulmonary, Critical Care, and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Sreenath K, Chaudhry R, Vinayaraj EV, Dey AB, Kabra SK, Thakur B, Guleria R. Distribution of Virulence Genes and Sequence-Based Types Among Legionella pneumophila Isolated From the Water Systems of a Tertiary Care Hospital in India. Front Public Health 2020; 8:596463. [PMID: 33330340 PMCID: PMC7719716 DOI: 10.3389/fpubh.2020.596463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/12/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Legionnaires' disease (LD) is a potentially fatal pneumonia predominantly caused by infection due to Legionella pneumophila although more than 50 other Legionella species are described. Water systems contaminated with Legionella spp. are the implicated sources of Legionnaires' disease. In this study, we aimed to assess Legionella contamination in the water sources of a tertiary care hospital and to determine the virulence properties and molecular characteristics of L. pneumophila environmental isolates. Methods: During May 2015 through August 2018, a total of 201 hospital water samples were tested for L. pneumophila by standardized culture procedures; environmental isolates were examined for the presence of two virulence genes: Legionella vir homolog (lvh) and repeats in structural toxin (rtxA) by PCR. The genotyping of isolates was performed by sequence-based typing (SBT) according to the protocol of the European Study Group for Legionella Infections (ESGLI). Results:L. pneumophila was isolated from 38/201 (18.9%) water samples; among the 46 isolates, the lvh locus was present in 45 (97.8%), the rtxA locus was found in 45 (97.8%), and both loci were found in 44 (95.7%) isolates. A total of 23 sequence types (STs) were identified among the 44 isolates (index of discrimination [IOD] of 0.929), and 11/23 (47.8%) STs were new to the ESGLI database. Conclusions: The study results showed genetic diversity in L. pneumophila isolates from the hospital environment along with a high percentage of pathogenicity loci. Besides, certain STs may have an increased ability to cause legionellosis, thus requires specific infection control and prevention strategies whenever identified.
Collapse
Affiliation(s)
- K Sreenath
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - E V Vinayaraj
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - A B Dey
- Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - S K Kabra
- Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Bhaskar Thakur
- Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Pulmonary, Critical Care, and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Sreenath K, Chaudhry R, Vinayaraj EV, Thakur B. Antibiotic susceptibility of environmental Legionella pneumophila isolated in India. Future Microbiol 2019; 14:661-669. [PMID: 31148475 DOI: 10.2217/fmb-2019-0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Data are limited regarding the antibiotic susceptibility of Legionella pneumophila in India. The aim of this study was to determine the drug susceptibility of environmental L. pneumophila isolates in India for antibiotics commonly used in clinical practice for Legionnaires' disease treatment. Materials & methods: The activities of seven antibiotics against 46 environmental isolates of L. pneumophila were evaluated by using E-test on buffered charcoal yeast extract-α agar. Results: Among the L. pneumophila isolates tested, no tendency toward drug resistance was observed. Rifampicin was the most potent drug followed by levofloxacin, while doxycycline and tetracycline were found to be the less active agents. Conclusion: Susceptibility testing of Legionella environmental isolates could be beneficial to notify resistance to antibiotics in the environment before it becomes evident in clinical strains.
Collapse
Affiliation(s)
- K Sreenath
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - E V Vinayaraj
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bhaskar Thakur
- Biostatistics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|