1
|
Krishna S, Jayaram A, Shetty U, Varamballi P, Mukhopadhyay C, Jagadesh A. Detection of H275Y oseltamivir resistance gene mutation among Influenza A(H1N1)pdm09 patients by allelic discrimination real-time RT-PCR. J Med Virol 2023; 95:e28764. [PMID: 37212286 DOI: 10.1002/jmv.28764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023]
Abstract
Influenza viruses can mutate genetically and cause a range of respiratory ailments. The H275Y mutation in the neuraminidase (NA) gene reduces the effectiveness of oseltamivir, a widely used drug for the treatment of Influenza A and B virus infection. The World Health Organization (WHO) recommends single-nucleotide polymorphism assays to detect this mutation. The present study aims to estimate the prevalence of H275Y mutation conferring oseltamivir resistance in Influenza A(H1N1)pdm09 virus among hospitalized patients from June 2014 to December 2021. Following the WHO protocol, allelic discrimination real-time RT-PCR was performed for 752 samples. Out of the 752 samples, 1 tested positive for Y275 gene mutation by allelic discrimination real-time RT-PCR. In samples of years 2020 and 2021, neither the H275 nor Y275 genotype was detected. Sequencing of the NA gene of all negative samples showed a mismatch between the NA sequence and the probes used in the allelic discrimination assay. Also, Y275 mutation was detected in only 1 sample from 2020. The prevalence of oseltamivir resistance was estimated as 0.27% among the Influenza A(H1N1)pdm09 patients during 2014-2021. The study highlights that the WHO-recommended probes for detecting H275Y mutation may not be useful to detect 2020 and 2021 circulating strains of Influenza A(H1N1)pdm09, emphasizing the need for continuous monitoring of mutations in the influenza virus.
Collapse
Affiliation(s)
- Smriti Krishna
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anup Jayaram
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ujwal Shetty
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prasad Varamballi
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anitha Jagadesh
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Lin P, Jin T, Yu X, Liang L, Liu G, Jovic D, Sun Z, Yu Z, Pan J, Fan G. Composition and Dynamics of H1N1 and H7N9 Influenza A Virus Quasispecies in a Co-infected Patient Analyzed by Single Molecule Sequencing Technology. Front Genet 2021; 12:754445. [PMID: 34804122 PMCID: PMC8595946 DOI: 10.3389/fgene.2021.754445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
A human co-infected with H1N1 and H7N9 subtypes influenza A virus (IAV) causes a complex infectious disease. The identification of molecular-level variations in composition and dynamics of IAV quasispecies will help to understand the pathogenesis and provide guidance for precision medicine treatment. In this study, using single-molecule real-time sequencing (SMRT) technology, we successfully acquired full-length IAV genomic sequences and quantified their genotypes abundance in serial samples from an 81-year-old male co-infected with H1N1 and H7N9 subtypes IAV. A total of 26 high diversity nucleotide loci was detected, in which the A-G base transversion was the most abundant substitution type (67 and 64%, in H1N1 and H7N9, respectively). Seven significant amino acid variations were detected, such as NA:H275Y and HA: R222K in H1N1 as well as PB2:E627K and NA: K432E in H7N9, which are related to viral drug-resistance or mammalian adaptation. Furtherly, we retrieved 25 H1N1 and 22 H7N9 genomic segment haplotypes from the eight samples based on combining high-diversity nucleotide loci, which provided a more concise overview of viral quasispecies composition and dynamics. Our approach promotes the popularization of viral quasispecies analysis in a complex infectious disease, which will boost the understanding of viral infections, pathogenesis, evolution, and precision medicine.
Collapse
Affiliation(s)
- Peng Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Tao Jin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | | | - Guang Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Zhou Sun
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhe Yu
- BGI-Shenzhen, Shenzhen, China
| | - Jingcao Pan
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Ben Hamed S, Elargoubi A, Harrabi M, Srihi H, Souiai O, Mastouri M, Almalki MA, Gharbi J, Ben M’hadheb M. Phylogenetic analysis of the neuraminidase segment gene of Influenza A/H1N1 strains isolated from Monastir Region (Tunisia) during the 2017-2018 outbreak. Biologia (Bratisl) 2021; 76:1797-1806. [PMID: 33727729 PMCID: PMC7952816 DOI: 10.1007/s11756-021-00723-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Influenza A/H1N1 is widely considered to be a very evolutionary virus causing major public health problems. Since the pandemic of 2009, there has been a rapid rise in human Influenza virus characterization. However, little data is available in Tunisia regarding its genetic evolution. In light of this fact, our paper aim is to genetically characterize the Neuraminidase, known as the target of antiviral inhibitors, in Tunisian isolates circulating in Monastir region during 2017-2018. In total of 31 positive Influenza A/H1N1 detected by multiplex real-time PCR, RT-PCR of neuraminidase was performed. Among the 31 positive samples, 7 samples representing fatal and most severe cases were conducted for sequencing and genetic analysis. The results thus obtained showed genetic evolution of the A/H1N1 neuraminidase between 2009 and 2010 and 2018-2019 outbreaks. All Tunisian isolates were genetically related to the recommended vaccine strain with a specific evolution. Moreover, the phylogenetic analysis demonstrated that France and especially Italian strains were the major related strains. Interestingly, our results revealed a specific cluster of Tunisian isolates where two intragroup were evolved in correlation with the severity and the fatalities cases. From the outcome of our investigation, this study confirms the genetic evolution of the Influenza A virus circulating in Tunisia and gives a preliminary analysis for a better comprehension of new emerging Tunisian strain's virulence and thus, a more appropriate monitoring of Influenza virus A/H1N1 during each round of outbreaks. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11756-021-00723-y.
Collapse
Affiliation(s)
- Sabrine Ben Hamed
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
| | - Aida Elargoubi
- Laboratoire de Recherche LR99ES27 “Maladies Transmissibles & Substances Biologiquement Actives”, Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, Tunisia
| | - Myriam Harrabi
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
- Laboratoroire de “BioInformatique, bioMathematique & bioStatistique” (BIMS), Institut Pasteur de Tunis, BP 74, 13, place Pasteur Tunis, 1002 Tunis, Tunisia
| | - Haythem Srihi
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
| | - Oussema Souiai
- Laboratoroire de “BioInformatique, bioMathematique & bioStatistique” (BIMS), Institut Pasteur de Tunis, BP 74, 13, place Pasteur Tunis, 1002 Tunis, Tunisia
| | - Maha Mastouri
- Laboratoire de Recherche LR99ES27 “Maladies Transmissibles & Substances Biologiquement Actives”, Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, Tunisia
| | - Mohammed Awadh Almalki
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982 Kingdom of Saudi Arabia
| | - Jawhar Gharbi
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982 Kingdom of Saudi Arabia
| | - Manel Ben M’hadheb
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
| |
Collapse
|