1
|
Tian J, Gao J, Cheng C, Xu Z, Chen X, Wu Y, Fu G, Jin B. NOP2-mediated 5-methylcytosine modification of APOL1 messenger RNA activates PI3K-Akt and facilitates clear cell renal cell carcinoma progression. Int J Biol Sci 2024; 20:4853-4871. [PMID: 39309431 PMCID: PMC11414376 DOI: 10.7150/ijbs.97503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background: By regulating the functions of multiple RNAs, 5-methylcytosine (m5C) RNA methylation, particularly mediated by NOP2, is involved in tumorigenesis and developments. However, the specific functions and potential mechanisms of m5C, especially involving NOP2, in clear-cell renal cell carcinoma (ccRCC), remain unclear. Methods: NOP2 expression in cell lines and patient tissues was detected using western blotting, quantitative real-time polymerase chain reaction (RT-qPCR), and immunohistochemistry. The biological effects of NOP2 on ccRCC cells were investigated through a series of in vitro and in vivo experiments. To explore the potential regulatory mechanisms by which NOP2 affects ccRCC progression, m5C bisulfite sequencing, RNA-sequencing, RNA immunoprecipitation and methylated RNA immunoprecipitation (RIP/MeRIP) RT-qPCR assay, luciferase reporter assay, RNA stability assay, and bioinformatic analysis were performed. Results: NOP2 expression was significantly upregulated in ccRCC tissues and was associated with poor prognosis. Moreover, loss-of-function and gain-of-function assays demonstrated that NOP2 altered ccRCC cell proliferation, migration, and invasion. Mechanistically, NOP2 stimulated m5C modification of apolipoprotein L1 (APOL1) mRNA, and m5C reader YBX1 stabilized APOL1 mRNA through recognizing and binding to m5C site in the 3'-untranslated regions. Silencing APOL1 expression inhibited ccRCC cell proliferation in vitro and tumor formation in vivo. Furthermore, NOP2/APOL1 affected ccRCC progression via the PI3K-Akt signaling pathway. Conclusion: NOP2 functions as an oncogene in ccRCC by promoting tumor progression through the m5C-dependent stabilization of APOL1, which in turn regulates the PI3K-Akt signaling pathway, suggesting a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Junjie Tian
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianguo Gao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Cheng Cheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Zhijie Xu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Xiaoyi Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Yunfei Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Guanghou Fu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310003, China
| |
Collapse
|
2
|
Sajid MS, Ding Y, Varghese RS, Kroemer A, Ressom HW. Unveiling Endogenous Serum Peptides as Potential Biomarkers for Hepatocellular Carcinoma in Patients with Liver Cirrhosis. J Proteome Res 2024; 23:3974-3983. [PMID: 39177206 PMCID: PMC11385380 DOI: 10.1021/acs.jproteome.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, mainly associated with liver cirrhosis. Current diagnostic methods for HCC have limited sensitivity and specificity, highlighting the need for improved early detection and intervention. In this study, we used a comprehensive approach involving endogenous peptidome along with bioinformatics analysis to identify and evaluate potential biomarkers for HCC. Serum samples from 40 subjects, comprising 20 HCC cases and 20 patients with liver cirrhosis (CIRR), were analyzed. Among 2568 endogenous peptides, 67 showed significant differential expression between the HCC vs CIRR. Further analysis revealed three endogenous peptides (VMHEALHNHYTQKSLSLSPG, NRFTQKSLSLSPG, and SARQSTLDKEL) that showed far better performance compared to AFP in terms of area under the receiver operating characteristic curve (AUC), showcasing their potential as biomarkers for HCC. Additionally, endogenous peptide IAVEWESNGQPENNYKT that belongs to the precursor protein Immunoglobulin heavy constant gamma 4 was detected in 100% of the HCC group and completely absent in the CIRR group, suggesting a promising diagnostic biomarker. Gene ontology and pathway analysis revealed the potential involvement of these dysregulated peptides in HCC. These findings provide valuable insights into the molecular basis of HCC and may contribute to the development of improved diagnostic methods and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Muhammad Salman Sajid
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Yuansong Ding
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Rency S Varghese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Habtom W Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| |
Collapse
|
3
|
Giri S, Choudhury A, Praharaj DL, Singh A, Vaidya A, Harindranath S, Anirvan P, Kalia S, Shukla A. Changing Etiological Spectrum of Hepatocellular Carcinoma in India-A Systematic Review and Meta-analysis. J Clin Exp Hepatol 2024; 14:101391. [PMID: 38559423 PMCID: PMC10979108 DOI: 10.1016/j.jceh.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Recent studies from both India and outside India have shown a change in the etiological profile of hepatocellular carcinoma (HCC). We aimed to analyze the etiological spectrum and changing trends of HCC etiology in India using a systematic review of current literature and meta-analysis. Methods Electronic databases of PubMed/Medline, Scopus, and Embase were searched from inception to July 2023 for studies reporting the data on the etiology of HCC from India. The pooled proportions with 95% confidence interval were calculated using summative statistics. Results A total of 60 studies (n = 12,327) were included in the final analysis. The pooled proportions of HCC cases with at least one positive and negative viral marker were 56.0 (49.5-62.6) and 43.1% (36.5-49.8), respectively. The pooled proportion of HCC cases with positive hepatitis B virus (HBV) markers was 41.0 (35.8-46.1), while those with positive markers for hepatitis C virus were 20.3 (17.0-23.6). The pooled proportion of cases with HCC with significant alcohol intake was 19.0% (15.6-22.4), and those related to nonalcoholic fatty liver disease (NAFLD) were 16.9% (12.1-21.7). Around 7.9% (5.8-10.0) of the cases had HCC with multiple etiologies. Subgroup analysis showed a significant variation with the location of the study based on zone. Meta-regression analysis based on publication year (1990-2023) showed a significant reduction in the proportion of cases with HBV and an increase in cases with NAFLD. In contrast, the proportion of cases with hepatitis C virus and alcohol did not change significantly. Conclusion Viral hepatitis is the most common etiology of HCC in India, predominantly HBV. The proportions of cases with HCC related to NAFLD are increasing, and those related to HBV are declining.
Collapse
Affiliation(s)
- Suprabhat Giri
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Ashok Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Dibya L Praharaj
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Ankita Singh
- Department of Gastroenterology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Arun Vaidya
- Department of Gastroenterology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Sidharth Harindranath
- Department of Gastroenterology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Prajna Anirvan
- Department of Gastroenterology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Shivam Kalia
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Akash Shukla
- Department of Gastroenterology, Seth GS Medical College and KEM Hospital, Mumbai, India
| |
Collapse
|
4
|
Giri S, Choudhury A, Praharaj DL, Singh A, Vaidya A, Harindranath S, Anirvan P, Kalia S, Shukla A. Changing Etiological Spectrum of Hepatocellular Carcinoma in India—A Systematic Review and Meta-analysis. J Clin Exp Hepatol 2024; 14:101391. [DOI: https:/doi.org/10.1016/j.jceh.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2025] Open
|
5
|
Serambeque B, Mestre C, Hundarova K, Marto CM, Oliveiros B, Gomes AR, Teixo R, Carvalho AS, Botelho MF, Matthiesen R, Carvalho MJ, Laranjo M. Proteomic Profile of Endometrial Cancer: A Scoping Review. BIOLOGY 2024; 13:584. [PMID: 39194522 PMCID: PMC11351934 DOI: 10.3390/biology13080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Proteomics can be a robust tool in protein identification and regulation, allowing the discovery of potential biomarkers. In clinical practice, the management of endometrial cancer can be challenging. Thus, identifying promising markers could be beneficial, helping both in diagnosis and prognostic stratification, even predicting the response to therapy. Therefore, this manuscript systematically reviews the existing evidence of the proteomic profile of human endometrial cancer. The literature search was conducted via Medline (through PubMed) and the Web of Science. The inclusion criteria were clinical, in vitro, and in vivo original studies reporting proteomic analysis using all types of samples to map the human endometrial cancer proteome. A total of 55 publications were included in this review. Most of the articles carried out a proteomic analysis on endometrial tissue, serum and plasma samples, which enabled the identification of several potential diagnostic and prognostic biomarkers. In addition, eight articles were analyzed regarding the identified proteins, where three studies showed a strong correlation, sharing forty-five proteins. This analysis also allowed the identification of the 10 most frequently reported proteins in these studies: EGFR, PGRMC1, CSE1L, MYDGF, STMN1, CASP3 ANXA2, YBX1, ANXA1, and MYH11. Proteomics-based approaches pointed out potential diagnostic and prognostic candidates for endometrial cancer. However, there is a lack of studies exploring novel therapeutic targets.
Collapse
Affiliation(s)
- Beatriz Serambeque
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
| | - Catarina Mestre
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
| | - Kristina Hundarova
- Gynecology Service, Department of Gynecology, Obstetrics, Reproduction and Neonatology, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal;
| | - Carlos Miguel Marto
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute of Integrated Clinical Practice and Laboratory for Evidence-Based Sciences and Precision Dentistry, 3000-075 Coimbra, Portugal
- Univ Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), 3030-788 Coimbra, Portugal
| | - Bárbara Oliveiros
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO) and Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Ana Rita Gomes
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, 3000-548 Coimbra, Portugal
| | - Ricardo Teixo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
| | - Ana Sofia Carvalho
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal; (A.S.C.); (R.M.)
| | - Maria Filomena Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Rune Matthiesen
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal; (A.S.C.); (R.M.)
| | - Maria João Carvalho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
- Gynecology Service, Department of Gynecology, Obstetrics, Reproduction and Neonatology, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal;
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Universitary Clinic of Gynecology, Faculty of Medicine, 3004-561 Coimbra, Portugal
| | - Mafalda Laranjo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
6
|
Xu F, Wang W, Li Q, Zou L, Miao H. The roles and mechanisms of APOL1 in the development of colorectal cancer. J Gastrointest Oncol 2024; 15:974-986. [PMID: 38989412 PMCID: PMC11231876 DOI: 10.21037/jgo-24-275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
Background Research has demonstrated that apolipoprotein L1 (APOL1) has a role in the emergence and progression of a number of malignant cancers. It is unclear, however, how APOL1 functions in colorectal cancer (CRC). In this study, we examined the possible molecular processes underlying APOL1's biological role in CRC. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to identify APOL1 expression in patients with CRC and the cell line of cancer tissue. Following transfection of human colon carcinoma cells (HCT116) and human colon adenocarcinoma cells (SW1116) with sh-APOL1, the effects of APOL1 on the biological behavior of CRC cell lines were examined. In nude mice, the effect of APOL1 on tumor growth was noted. The protein interaction between APOL1 and RUNX1 was detected via coimmunoprecipitation. The expression of relevant proteins and cell biological behaviors were examined to confirm the APOL1-RUNX1 pathway in CRC cell lines. Results The CRC tissues and cells exhibited elevated expression of APOL1. HCT116 and SW1116 cells' proliferation, migration, and invasion were suppressed by sh-APOL1, and sh-APOL1 also increased the expression of E-cadherin and decreased the expression of RUNX1, cyclin D1, β-catenin, N-cadherin, and vimentin. APOL1 bound to the RUNX1 protein and regulated its protein levels. The counteractive effect of sh-APOL1 epithelial-mesenchymal transition (EMT), proliferation, migration, and invasion of CRC cells was counteracted by the overexpression of RUNX1. By silencing APOL1, the Wnt-β-catenin pathway was able to restrain EMT and regulate the biological behavior processes in CRC cells. Conclusions APOL1 has potential as a diagnostic biomarker for CRC. By preventing the Wnt-β-catenin pathway from being activated, the sh-APOL1-binding protein RUNX1 inhibited the EMT and biological behavior of CRC cells.
Collapse
Affiliation(s)
- Feipeng Xu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiwei Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qidong Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lirui Zou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huilai Miao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Kollerits B, Gruber S, Steinbrenner I, Schwaiger JP, Weissensteiner H, Schönherr S, Forer L, Kotsis F, Schultheiss UT, Meiselbach H, Wanner C, Eckardt KU, Kronenberg F. Apolipoprotein A-IV concentrations and cancer in a large cohort of chronic kidney disease patients: results from the GCKD study. BMC Cancer 2024; 24:320. [PMID: 38454416 PMCID: PMC10921727 DOI: 10.1186/s12885-024-12053-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is highly connected to inflammation and oxidative stress. Both favour the development of cancer in CKD patients. Serum apolipoprotein A-IV (apoA-IV) concentrations are influenced by kidney function and are an early marker of kidney impairment. Besides others, it has antioxidant and anti-inflammatory properties. Proteomic studies and small case-control studies identified low apoA-IV as a biomarker for various forms of cancer; however, prospective studies are lacking. We therefore investigated whether serum apoA-IV is associated with cancer in the German Chronic Kidney Disease (GCKD) study. METHODS These analyses include 5039 Caucasian patients from the prospective GCKD cohort study followed for 6.5 years. Main inclusion criteria were an eGFR of 30-60 mL/min/1.73m2 or an eGFR > 60 mL/min/1.73m2 in the presence of overt proteinuria. RESULTS Mean apoA-IV concentrations of the entire cohort were 28.9 ± 9.8 mg/dL (median 27.6 mg/dL). 615 patients had a history of cancer before the enrolment into the study. ApoA-IV concentrations above the median were associated with a lower odds for a history of cancer (OR = 0.79, p = 0.02 when adjusted age, sex, smoking, diabetes, BMI, albuminuria, statin intake, and eGFRcreatinine). During follow-up 368 patients developed an incident cancer event and those with apoA-IV above the median had a lower risk (HR = 0.72, 95%CI 0.57-0.90, P = 0.004). Finally, 62 patients died from such an incident cancer event and each 10 mg/dL higher apoA-IV concentrations were associated with a lower risk for fatal cancer (HR = 0.62, 95%CI 0.44-0.88, P = 0.007). CONCLUSIONS Our data indicate an association of high apoA-IV concentrations with reduced frequencies of a history of cancer as well as incident fatal and non-fatal cancer events in a large cohort of patients with CKD.
Collapse
Affiliation(s)
- Barbara Kollerits
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria
| | - Simon Gruber
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Johannes P Schwaiger
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine IV - Nephrology and Primary Care, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine IV - Nephrology and Primary Care, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Chronic Kidney Disease Study, Erlangen, Germany
| | - Christoph Wanner
- Division of Nephrology, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Chronic Kidney Disease Study, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria.
| |
Collapse
|
8
|
Xu Y, Chen X, Liu N, Chu Z, Wang Q. Identification of fibroblast-related genes based on single-cell and machine learning to predict the prognosis and endocrine metabolism of pancreatic cancer. Front Endocrinol (Lausanne) 2023; 14:1201755. [PMID: 37588985 PMCID: PMC10425556 DOI: 10.3389/fendo.2023.1201755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023] Open
Abstract
Background Single-cell sequencing technology has become an indispensable tool in tumor mechanism and heterogeneity studies. Pancreatic adenocarcinoma (PAAD) lacks early specific symptoms, and comprehensive bioinformatics analysis for PAAD contributes to the developmental mechanisms. Methods We performed dimensionality reduction analysis on the single-cell sequencing data GSE165399 of PAAD to obtain the specific cell clusters. We then obtained cell cluster-associated gene modules by weighted co-expression network analysis and identified tumorigenesis-associated cell clusters and gene modules in PAAD by trajectory analysis. Tumor-associated genes of PAAD were intersected with cell cluster marker genes and within the signature module to obtain genes associated with PAAD occurrence to construct a prognostic risk assessment tool by the COX model. The performance of the model was assessed by the Kaplan-Meier (K-M) curve and the receiver operating characteristic (ROC) curve. The score of endocrine pathways was assessed by ssGSEA analysis. Results The PAAD single-cell dataset GSE165399 was filtered and downscaled, and finally, 17 cell subgroups were filtered and 17 cell clusters were labeled. WGCNA analysis revealed that the brown module was most associated with tumorigenesis. Among them, the brown module was significantly associated with C11 and C14 cell clusters. C11 and C14 cell clusters belonged to fibroblast and circulating fetal cells, respectively, and trajectory analysis showed low heterogeneity for fibroblast and extremely high heterogeneity for circulating fetal cells. Next, through differential analysis, we found that genes within the C11 cluster were highly associated with tumorigenesis. Finally, we constructed the RiskScore system, and K-M curves and ROC curves revealed that RiskScore possessed objective clinical prognostic potential and demonstrated consistent robustness in multiple datasets. The low-risk group presented a higher endocrine metabolism and lower immune infiltrate state. Conclusion We identified prognostic models consisting of APOL1, BHLHE40, CLMP, GNG12, LOX, LY6E, MYL12B, RND3, SOX4, and RiskScore showed promising clinical value. RiskScore possibly carries a credible clinical prognostic potential for PAAD.
Collapse
Affiliation(s)
- Yinghua Xu
- Department of Translational Medicine and Clinical Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xionghuan Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Trauma Surgery, Tiantai People’s Hospital of Zhejiang Province, Taizhou, China
| | - Nan Liu
- Department of Translational Medicine and Clinical Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong Chu
- Department of Translational Medicine and Clinical Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Wang
- Department of Translational Medicine and Clinical Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Naryzhny S, Ronzhina N, Zorina E, Kabachenko F, Klopov N, Zgoda V. Construction of 2DE Patterns of Plasma Proteins: Aspect of Potential Tumor Markers. Int J Mol Sci 2022; 23:ijms231911113. [PMID: 36232415 PMCID: PMC9569744 DOI: 10.3390/ijms231911113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tumor markers aids in the early detection of cancer recurrence and prognosis. There is a hope that they might also be useful in screening tests for the early detection of cancer. Here, the question of finding ideal tumor markers, which should be sensitive, specific, and reliable, is an acute issue. Human plasma is one of the most popular samples as it is commonly collected in the clinic and provides noninvasive, rapid analysis for any type of disease including cancer. Many efforts have been applied in searching for “ideal” tumor markers, digging very deep into plasma proteomes. The situation in this area can be improved in two ways—by attempting to find an ideal single tumor marker or by generating panels of different markers. In both cases, proteomics certainly plays a major role. There is a line of evidence that the most abundant, so-called “classical plasma proteins”, may be used to generate a tumor biomarker profile. To be comprehensive these profiles should have information not only about protein levels but also proteoform distribution for each protein. Initially, the profile of these proteins in norm should be generated. In our work, we collected bibliographic information about the connection of cancers with levels of “classical plasma proteins”. Additionally, we presented the proteoform profiles (2DE patterns) of these proteins in norm generated by two-dimensional electrophoresis with mass spectrometry and immunodetection. As a next step, similar profiles representing protein perturbations in plasma produced in the case of different cancers will be generated. Additionally, based on this information, different test systems can be developed.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
- Correspondence: ; Tel.: +7-911-176-4453
| | - Natalia Ronzhina
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Elena Zorina
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| | - Fedor Kabachenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Nikolay Klopov
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| |
Collapse
|
10
|
Lin J, Xu Z, Xie J, Deng X, Jiang L, Chen H, Peng C, Li H, Zhang J, Shen B. Oncogene APOL1 promotes proliferation and inhibits apoptosis via activating NOTCH1 signaling pathway in pancreatic cancer. Cell Death Dis 2021; 12:760. [PMID: 34341330 PMCID: PMC8329288 DOI: 10.1038/s41419-021-03985-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
APOL1 encodes a secreted high-density lipoprotein, which has been considered as an aberrantly expressed gene in multiple cancers. Nevertheless, the role of APOL1 in the regulatory mechanisms of pancreatic cancer remains unknown and should be explored. We identified APOL1 was abnormally elevated in human pancreatic cancer tissues compared with that in adjacent tissues and was associated with poor prognosis. The effects of APOL1 in PC cell proliferation, cell cycle, and apoptosis was verified via functional in vitro and in vivo experiments. The results showed that knockdown of APOL1 significantly inhibited the proliferation and promoted apoptosis of pancreatic cancer. In addition, we identified APOL1 could be a regulator of NOTCH1 signaling pathway using bioinformatics tools, qRT-PCR, dual-luciferase reporter assay, and western blotting. In summary, APOL1 could function as an oncogene to promote proliferation and inhibit apoptosis through activating NOTCH1 signaling pathway expression in pancreatic cancer; therefore, it may act as a novel therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Jiewei Lin
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Xu
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junjie Xie
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaxing Deng
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxi Jiang
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghong Peng
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongwei Li
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqiang Zhang
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China. .,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Baiyong Shen
- Pancreatic Disease Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China. .,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Akkiz H, Carr BI, Guerra V, Donghia R, Yalçın K, Karaoğullarından U, Altıntaş E, Özakyol A, Şimşek H, Balaban HY, Balkan A, Uyanıkoğlu A, Ekin N, Delik A. Plasma lipids, tumor parameters and survival in HCC patients with HBV and HCV. JOURNAL OF TRANSLATIONAL SCIENCE 2021; 7:10.15761/jts.1000421. [PMID: 34457356 PMCID: PMC8389344 DOI: 10.15761/jts.1000421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION AND AIMS Hepatocellular carcinoma (HCC) is a consequence of chronic liver disease, particularly from hepatitis B or C and increasingly from obesity and metabolic syndrome. Since lipids are an important component of cell membranes and are involved in cell signaling and tumor cell growth, we wished to evaluate the relationship between HCC patient plasma lipids and maximum tumor diameter and other indices of HCC human biology. METHODS We examined prospectively-collected data from a multi-institutional collaborative Turkish HCC working group, from predominantly HBV-based patients, for plasma lipid profiles, consisting of triglycerides, total cholesterol, LDL-cholesterol (LDL) and HDL-cholesterol (HDL) and compared these with the associated patient maximum tumor diameter (MTD), portal vein thrombosis, alpha-fetoprotein (AFP) and also with patient survival. RESULTS We found that both low HDL (p=0.0002) and high LDL (p=0.003) levels were significantly associated with increased MTD, as well as in a final multiple linear regression model on MTD. The combination of low HDL combined with high HDL levels were significant in a regression model on MTD, PVT and an HCC Aggressiveness Index (Odds Ratio 12.91 compared to an Odds Ratio of 1 for the reference). Furthermore, in a Cox regression model on death, the HDL plus LDL combination had a significantly higher Hazard Ratio than the reference category. CONCLUSIONS Low plasma HDL, high plasma LDL and especially the combination, were significantly related to more aggressive HCC phenotype and the combination was significantly related to a higher Hazard Ratio for death.
Collapse
Affiliation(s)
- H Akkiz
- Çukurova University, Adana, Turkey
| | - BI Carr
- İnonu University, Malatya, Turkey
| | - V Guerra
- National Institute of Gastroenterology, S. de Bellis Research hospital, Castellana Grotte (BA), Italy
| | - R Donghia
- National Institute of Gastroenterology, S. de Bellis Research hospital, Castellana Grotte (BA), Italy
| | - K Yalçın
- Dikle University, Diyarbakır, Turkey
| | | | | | - A Özakyol
- Eskişehir Osmangazi University, Eskişehir, Turkey
| | - H Şimşek
- Hacettepe University, Ankara, Turkey
| | | | - A Balkan
- Gaziantep University, Gazientep, Turkey
| | | | - N Ekin
- Dikle University, Diyarbakır, Turkey
| | - A Delik
- Çukurova University, Adana, Turkey
| |
Collapse
|
12
|
Kim JY, Lee GB, Lee JC, Moon MH. High-Speed Screening of Lipoprotein Components Using Online Miniaturized Asymmetrical Flow Field-Flow Fractionation and Electrospray Ionization Tandem Mass Spectrometry: Application to Hepatocellular Carcinoma Plasma Samples. Anal Chem 2021; 93:4867-4875. [PMID: 33689313 DOI: 10.1021/acs.analchem.0c04756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study introduces a high-speed screening method for the quantitative analysis of lipoprotein components in human plasma samples using online miniaturized asymmetrical flow field-flow fractionation and electrospray ionization-tandem mass spectrometry (mAF4-ESI-MS/MS). Using an mAF4 channel, high-density lipoproteins and low-density lipoproteins can be fractionated by size at a high speed (<10 min) and directly fed to ESI-MS/MS for the simultaneous screening of targeted lipid species and apolipoprotein A1 (ApoA1). By employing the heated electrospray ionization probe as an ionization source, an mAF4 effluent flow rate of up to a few tens of microliters per minute can be used, which is adequate for direct feeding to MS without splitting the outflow, resulting in a consistent feed rate to MS for stable MS detection. mAF4-ESI-MS/MS was applied to hepatocellular carcinoma (HCC) plasma samples for targeted quantification of 25 lipid biomarker candidates and ApoA1 compared with healthy controls, the results of which were in statistical agreement with the quantified results obtained by nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry. Moreover, the present method provided the simultaneous detection of changes in lipoprotein size and the relative amount. This study demonstrated the potential of mAF4-ESI-MS/MS as an alternative high-speed screening platform for the top-down analysis of targeted lipoprotein components in patients with HCC, which is applicable to other diseases that involve the perturbation of lipoproteins.
Collapse
Affiliation(s)
- Jin Yong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Gwang Bin Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong Cheol Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Lennon S, Hughes CJ, Muazzam A, Townsend PA, Gethings LA, Wilson ID, Plumb RS. High-Throughput Microbore Ultrahigh-Performance Liquid Chromatography-Ion Mobility-Enabled-Mass Spectrometry-Based Proteomics Methodology for the Exploratory Analysis of Serum Samples from Large Cohort Studies. J Proteome Res 2021; 20:1705-1715. [PMID: 33566619 DOI: 10.1021/acs.jproteome.0c00821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The deployment of proteomic analysis in clinical studies represents a significant opportunity to detect and validate biomarkers in translational medicine, improve disease understanding, and provide baseline information on population health. However, comprehensive proteome studies usually employ nanoscale chromatography and often require several hours of analysis/sample. Here, we describe a high-throughput liquid chromatography tandem mass spectrometry (LC/MS/MS) methodology using 1 mm scale chromatography requiring only 15 min/sample, coupled to ion mobility-enabled mass spectrometry. The short run time effected a 6-fold increase in productivity compared with nanoscale LC/MS. The method demonstrated excellent reproducibility with retention time coefficient of variations of less than 0.05% and peak area reproducibility ranging from 5 to 15%. The 1 mm system produced similar chromatographic peak capacity values to the nanoscale miniaturized system, detecting 90% of the Escherichia coli proteins identified by the 75 μm LC/MS system (albeit based on only 75% of the peptides found by the latter). Application to the analysis of serum samples from a human prostate cancer study group resulted in the identification of a total of 533 proteins revealing the differential expression of proteins linked to patients receiving hormone-radiotherapy or undergoing surgery.
Collapse
Affiliation(s)
- Sarah Lennon
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K
| | | | - Ammara Muazzam
- Division of Cancer Sciences, Oglesby Cancer Research Building, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, U.K
| | - Paul A Townsend
- Division of Cancer Sciences, Oglesby Cancer Research Building, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, U.K.,Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, U.K
| | - Lee A Gethings
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K.,Manchester Institute of Biotechnology, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M1 7DN, U.K
| | - Ian D Wilson
- Department of Metabolism, Digestion and Reproduction, Imperial College, South Kensington, London SW7 2AZ, U.K
| | - Robert S Plumb
- Scientific Operations, Waters Corporation, Milford, Massachusetts 01757, United States
| |
Collapse
|
14
|
Zhang Y, Zheng L. Apolipoprotein: prospective biomarkers in digestive tract cancer. Transl Cancer Res 2020; 9:3712-3720. [PMID: 35117733 PMCID: PMC8799137 DOI: 10.21037/tcr-19-2106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023]
Abstract
Digestive tract cancer, which is characterized by high morbidity and mortality, seriously affects the quality of life of patients worldwide. The digestive tract has abundant blood supply and nutriment, providing a suitable environment for tumor cells. Under chemical, physical, and biological stimuli, the activated cancer-related genes promote tumorigenesis. The synthesis of apolipoprotein occurs in the liver, intestine, and other digestive organs. However, the functions of apolipoproteins are not limited to lipid metabolism. An increasing number of studies have revealed that apolipoproteins take part in the regulation of tumor behavior. Apolipoprotein A (apoA) has recently been acknowledged as a beneficial indicator of several cancers, including colon, hepatocellular, and pancreatic cancer. Apolipoprotein E (apoE) can affect tumor susceptibility on account of genetic polymorphism. Levels of apolipoprotein C (apoC), B (apoB), and D (apoD) also impact tumor progression and the prognosis of patients. However, because of individual, racial, and genetic differences, a consensus has not yet been reached. Based on clinical data and analysis, apolipoproteins could be a novel target and marker in tumor therapy and prevention.
Collapse
Affiliation(s)
- Yibo Zhang
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Lu Zheng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
15
|
Ren L, Yi J, Li W, Zheng X, Liu J, Wang J, Du G. Apolipoproteins and cancer. Cancer Med 2019; 8:7032-7043. [PMID: 31573738 PMCID: PMC6853823 DOI: 10.1002/cam4.2587] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
The role of apolipoproteins in cardiovascular disease has been well investigated, but their participation in cancer has only been explored in a few published studies which showed a close link with certain kinds of cancer. In this review, we focused on the function of different kinds of apolipoproteins in cancers, autophagy, oxidative stress, and drug resistance. The potential application of apolipoproteins as biomarkers for cancer diagnosis and prognosis was highlighted, together with an investigation of their potential as drug targets for cancer treatment. Many important roles of apolipoproteins and their mechanisms in cancers were reviewed in detail and future perspectives of apolipoprotein research were discussed.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|